English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43774886      線上人數 : 3476
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81925


    題名: 應用深度學習之睡眠分期辨識
    作者: 吳佳俊;Wu, Jia-Jyun
    貢獻者: 電機工程學系
    關鍵詞: 睡眠腦波;深度學習;小波轉換;長短期記憶;雲端;穿戴式;brain wave;deep learning;wavelet transform;Long Short-Term Memory(LSTM);cloud;wearable
    日期: 2019-10-15
    上傳時間: 2020-01-07 14:38:45 (UTC+8)
    出版者: 國立中央大學
    摘要: 患有睡眠障礙的患者可能影響他們的整體健康,安全和生活品質。睡眠不佳與高血壓、動脈粥樣硬化(膽固醇阻塞的動脈)、心力衰竭、心臟病發作、中風、糖尿病和肥胖有關。然而,監測睡眠狀況需要醫生檢查大量的腦電圖數據,需要花費大量的時間,可能會有主觀判斷的問題。因此,開發用於自動且準確地檢測EEG數據中睡眠狀況的客觀平台是很重要的。在本文中,我們開發了一種基於深度學習的腦電數據睡眠分析系統。我們採用深度學習網路進行睡眠EEG分析,受測者的EEG進行小波轉換將訊號的頻帶特徵取出,再將其八個特徵值(最大值、最小值、中位數、平均值、標準差、全距、偏度、峰度)放入深度學習網路來做分析,其網路架構為LSTM,經由其網路所得到得準確度高達到83%,將取出八個特徵值以及直接時頻分析的結果做比較,發現取出八個特徵的效果比較好。接下來的目標為運用在硬體上,搭配雲端醫療系統,更能降低醫療資源,進而達到完善的治療以及資料的建檔。;Patients who suffer from sleep disorder can affect their overall health, safety and quality of life. Poor sleep has been linked with high blood pressure, atherosclerosis (cholesterol- clogged arteries), heart failure, heart attack,stroke , diabetes, and obesity. However, monitoring of sleep conditions requires physicians to examine huge amount of EEG data which is time-consuming and might fall into the pitfall of subjective judgement. Accordingly, development of an objective platform for automatic and accurate detection of sleep condition in EEG data is important. In this paper, we developed a deep learning based sleep evaluation system for EEG data. We adopted deep learning techniques to analyze sleep EEG data. The EEG data recorded from Fp1, Fp2,Pz and Oz positions were firstly transformed into temporal-frequency domain using wavelet analysis as training features. Eight characteristic features (maximum, minimum, median, average, standard deviation, range, skewness, kurtosis) on temporal-frequency domain were used as input data to train a LSTM network. The accuracy of the network is 83%. Comparing the eight eigenvalues and the results of the direct time-frequency analysis, we found that the performance of extracting eight features is better. The next goal is to use on hardware and the cloud medical system. The development of this sleep EEG analysis technique can reduce medical resources and facilitate the documentation of subject’s sleep history for better treatment in the future.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML184檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明