中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83792
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42587293      Online Users : 1125
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83792


    Title: 從EEG解釋虛擬實境的干擾對注意力的影響;Effect of Virtual-Reality Interference on Attention from EEG Perspective
    Authors: 李育齊;Lee, Yu-Chi
    Contributors: 軟體工程研究所
    Keywords: 虛擬實境;腦電圖;眼動追蹤;持續性表現測驗;注意力;Virtual Reality;Electroencephalography;Eye tracking;Continuous performance test;Attention
    Date: 2020-07-30
    Issue Date: 2020-09-02 17:06:36 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 虛擬實境提供了新的研究與證實方法,過去在 ADHD 的研究已經結合了 EEG、 虛擬實境來訓練或診斷評測,但都是將實驗內容挪到 VR 環境中,並未模擬真實 干擾的狀況作訓練或測驗,本篇使用的虛擬教室重現了在實際生活中可能發生的 干擾,在 VR 場景中受到干擾是否能反應在 P300 的各項量化指標來檢驗 VR 場 景中注意力干擾的有效性,並且在成人的受測者的實驗中進行量測。我們同時測 量 EEG 與 eye tracking 的變化。最終在 channel Cz, Pz, FCz, Cpz, C3 上的 ERP 特 徵與頻域特徵與 eye tracking features 發現有顯著差異,並且在顯著差異的特徵與 機器學習模型結合後也得到不錯的分類效果。而在任務表現上並沒有顯著差異, 這表示生理資訊的加入能夠得到比任務表現更更清楚的身體狀況而非自己或他 人的主觀意識。基於我們的系統,未來應用在 ADHD 患者時,我們期望 VR 提供 的干擾可以有足夠的效果來刺激患者,並能夠提供新的訓練或評測方式。;Virtual reality provides new research and verification methods. In the past, research in ADHD has combined EEG and virtual reality to train or diagnose and evaluate, but they all apply experimental content to the VR environment and do not simulate the situation of real interference. For training or testing, the virtual classroom used in this article reproduces the interference that may occur in real life. We use P300′s various quantitative indicators to detect the effectiveness of attention disturbance in VR scenes, and measure it in experiments with adult subjects. We measure the changes of EEG and eye tracking at the same time. In the end, significant differences were found between the ERP features and frequency domain features on channel Cz, Pz, FCz, Cpz, C3 and eye tracking features, and a good classification effect was also obtained after combining the significantly different features with the machine learning model. There is no significant difference in task performance, which means that the addition of physiological information can get a clearer physical condition than the task performance rather than the subjective consciousness of oneself or others. Based on our system, when it is applied to ADHD patients in the future, we expect that the interference provided by VR can have sufficient effects to stimulate patients and provide new training or evaluation methods.
    Appears in Collections:[Software Engineer] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML209View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明