中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83862
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41643205      Online Users : 1272
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83862


    Title: A Lightweight RSSI-Based Device-Free Localization System
    Authors: 陳彥宇;Chen, Yen-Yu
    Contributors: 通訊工程學系
    Keywords: 免攜式定位;機器學習;時間序列分類;Device-Free Localization;Machine Learning;Time Series Classification
    Date: 2020-08-20
    Issue Date: 2020-09-02 17:16:56 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 免攜帶式定位為一種新興的定位技術,此技術可在目標沒有攜帶任何裝置下透過無線感知網絡中的電磁訊號進行定位。 此項技術的關鍵點在於當目標在監視區域中移動時,如何從無線信號中提取特徵並進行定位。為解決此問題,我們通過將免攜帶式定位問題轉化為多變數時間序列分類問題,並以新興的深度學習方法來處理。此外,我們提出的深度學習模型,稱作LSTM-MSCNN,用以萃取原始無線信號並完成端到端定位服務。另一個重要的問題是如何有效地決定無線設備的放置位置並組建無線感知網路,我們提出了一種兼顧成本效益和定位準確性的設備放置策略來解決此問題。從實驗數據中可以觀察到,本論文所提出的模型在眾多的比較的方法中在不同數量感測器配置上皆取得最高的定位精度。此外,本論文所提出的硬體擺放策略較正常擺放的方法有著百分之二十五的準確率提升,這些結果凸顯了提出的硬體擺放策略的價值,並能以一個有規劃性的方式創建適用於免攜帶式定位所需的環境。
    ;Device-free localization (DFL) is an emerging technology that locates targets without any additional devices via wireless sensor networks. A fundamental problem of DFL is how to extract features from wireless signals while a target is moving in the monitoring area. We address this problem by formulating the DFL as a time series classification problem. Moreover, we propose a deep learning (DL) model taking advantage of long short-term memory (LSTM) and multi-scale convolutional network (MSCNN), called LSTM-MSCNN, for received signal strength (RSS) based localization. The network consists of multiple CNN branches to extract patterns in various time scales; LSTM cells learn the temporal dependencies in the RSS sequences. For device placement planning, we propose a strategy considering cost-effectiveness and localization accuracy. The experimental results show that the proposed model achieves the highest localization accuracy among the compared methods in different sensor implementation stages on real-world data. Additionally, the sensor implement based on the proposed strategy outperforms the uniform implement more than $25\%$ in localization accuracy.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML150View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明