English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41083798      線上人數 : 590
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83937


    題名: 結合圖形卷積與遞迴歸神經網路的關聯圖預測模型;GC-RNN: A Novel Relational Graph Prediction Model Based on the Fusion of Graph Convolution Network and Recurrent Neural Network
    作者: 王佳薇;Wanchainawin, Nathaporn
    貢獻者: 資訊工程學系
    關鍵詞: 圖卷積網路;長短期記憶;動態圖;GCN;LSTM;Graph Convolutional Network;Long Short-Term Memory;Dynamic graph;GCN;LSTM
    日期: 2020-07-17
    上傳時間: 2020-09-02 17:43:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 現實世界中許多高維度不規則區域的資料可以用圖來表示,像是社群網路、大腦連接組、詞向量。有多項研究是在探討如何以圖的架構開發模型,如:Graph Neuron Network、Graph Convolutional Network和Graph Attention Network等,這些網路是在靜態圖上運作的,多數是用於分類任務。
    在這項研究中,我們著重於動態序列資料的預測,像是每年co-author relation graph的變化,或是玩家在隨時間的互動關係。我們的模型結合了Variational Graph Auto-Encoder(VGAE)、Graph Convolutional Network(GCN)和Long short-term memory(LSTM),其中廣泛的使用遞迴神經網路。我們在五個資料集上檢測模型的效果,High-energy physics theory citation network、Dynamic Face-to-Face Interaction Networks、CollegeMsg temporal network、Email-Eu-core temporal network和DBLP collaboration network and ground-truth communities。;A lot of real-world data in high-dimensional irregular domain, such as social networks, brain connectomes or words’ embedding, can be represented by graphs. There are various researches that developed models to operate on graph-structured data, such as Graph Neuron Network, Graph Convolutional Network, Graph Attention Network, etc. These networks are operated on static graphs, mostly use for classification task.
    In this research, we are interested in prediction of dynamic and sequential data, such as how is the changes of the co-author relationship graph in each year, or how players interact with each other through time. We implement a model from the combination of Variational Graph Auto-Encoder (VGAE), which is a variant of Graph Convolutional Network (GCN) with Long short-term memory (LSTM), which is a wildly used Recurrent Neural Network. And evaluate the performance of the model on 5 datasets, High-energy physics theory citation network, Dynamic Face-to-Face Interaction Networks, CollegeMsg temporal network, Email-Eu-core temporal network and DBLP collaboration network and ground-truth communities.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML117檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明