English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41076620      線上人數 : 855
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83951


    題名: 動態特徵選擇與學習於股價漲跌預測之研究;Dynamic Feature Selection and Learning in Stock Price Prediction
    作者: 王菘瑞;Wang, Sung-Jui
    貢獻者: 資訊管理學系
    關鍵詞: 股價預測;特徵選擇;關鍵指標;動態學習;動態特徵選擇與學習;Stock Price Prediction;Feature Selection;Key Metrics;Dynamic Learning;Dynamic Feature Selection and Learning
    日期: 2020-06-15
    上傳時間: 2020-09-02 17:45:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 大多數人在進行股票交易的時候,經常會運用一些指標做為決策參考,而且習慣觀察相同的類型,再根據當中的變化決定買進或賣出;但有些時候會發生判斷失靈的狀況,也就是說某些時候在系統性的因素外,指標與股價走勢會突然偏離正常的理解,這些背離的情況造成了預測失準及投資損失。本研究認為股價在各波段中應該隱藏著不同的關鍵指標,相同的指標在不同時間具有不同程度的權重,這樣的關係主導著股價變化,所以若能各波段中找出代表的關鍵指標,再利用動態的方式進行訓練或許能讓模型更接近真實。因此本研究提出「動態特徵選擇與學習 (Dynamic Feature Selection and Learning, DFSL)」方法。利用動態的方式找出各波段的關鍵指標,再動態的對各波段進行訓練。根據本研究實驗結果得到結果:DFSL 在預測未來股價漲跌的正確率優於靜態特徵選擇與學習方式。;Most people often use some metrics as a reference when making stock transactions, and they are accustomed to observing the same type, and then decide to buy or sell according to the changes in it. But sometimes there will be a situation of judgment failure, that is to say, in some cases, outside of non-systematic factors, the trend of metrics and stock prices will suddenly deviate from normal understanding. These deviations have caused misprediction and investment losses. This study believes that different key metrics should be hidden in the stock price in each band. The same indicator has different degrees of weight and meaning at different times. This relationship dominates the change in the stock price. So if we can find the representative key metrics in each band, and then use dynamic training to make the model closer to the real. Therefore, this paper proposes a method of “Dynamic Feature Selection and Learning (DFSL)”. Use a dynamic method to find the key metrics of each band, and then dynamically train each band. According to the experimental results of this research, the result is that DFSL is better than static feature selection and learning methods in predicting future stock price changes.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML82檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明