English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43795132      線上人數 : 1479
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84093


    題名: 基於雙層詞性序列對序列模型之對話機器人;Chatbot based on two layer parts-of-speech Seq2Seq Model
    作者: 呂家慧;Lu, Chia-Hui
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 對話機器人;詞性;序列對序列
    日期: 2020-07-28
    上傳時間: 2020-09-02 18:03:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 對話機器人的智能應答,除可提供快速的客戶服務,亦可以幫助企業節省大量人力,所以提供這樣的服務也代表企業的一種競爭優勢。但其效能調校工作常需耗費時間及人力成本進行維護。我們希望可以提供一種生成式對話機器人,透過深度學習大量資料建立一種自然生成對話的模型。為了提高對話機器人的回覆準確率,我們在機器訓練過程中加入了詞性維度。藉由詞性,讓機器學習了解一個句子的結構及文法,在組成答句時,能夠更貼近人類的語言。
    根據研究,生成式對話機器人多為序列對序列的深度學習模型。我們基於門控遞迴單元編碼器與解碼器組成序列對序列框架,再加入詞性,設計出四個新的詞性序列對序列。根據模型訓練後的評估結果,其中三種設計的模型都有高於基準序列對序列框架的效能表現,其中又以雙層詞性序列對序列模型的效能最為優越。
    雙層詞性序列對序列的模型,經實驗多重驗證後,應可實作於業界的對話機器人的訓練上。提升的效能,除了可降低維護人力成本外;精準的回覆客戶問題,亦可增加客戶滿意度。
    ;In this paper, I develop a deep learning model to build a chatbot. To improve the response accuracy of the chatbot, I added the parts-of-speech dimension in the model to make the machine can learn the structure and grammar of a sentence.
    This research is based on GRU Seq2Seq framework, adding parts-of-speech dimension and generate 4 new models for comparison.
    According to the evaluation results, the three models of the 1hPosSeq2Seq Model, CVPoSSeq2Seq Model, and 2LPoSSeq2Seq Model all have higher performance than the benchmark sequence-to-sequence framework. Among them, the performance of the LPoSSeq2Seq model is the most superior, with a performance improvement of 40.08 %.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML183檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明