中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84101
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59359756      Online Users : 830
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/84101


    Title: 喚醒詞辨識之微處理器實作;Microcontroller Unit Implementation of Wake-up Word Detection
    Authors: 張桐;Tung, Chang
    Contributors: 資訊工程學系
    Keywords: 喚醒詞辨識;卷積神經網路;微處理器;深度可分離卷積;Keyword spotting;Convolution Neural Network;Microcontroller Unit;Depthwise Separable Convolution
    Date: 2020-07-30
    Issue Date: 2020-09-02 18:04:49 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,隨著物聯網與深度學習的發展,人工智慧的應用更加廣泛。智慧音箱的出現改變消費者的使用習慣,能使消費者直接用口頭下達指令。這種趨勢也說明未來的家電會偏向用語音輸入指令,但多數家電的運作不像個人電腦有作業系統分配運算資源,是由多個微控制器組織重覆執行功能。要用語音指令控制微控制器,勢必要在微控制器上運行喚醒詞辨識系統。
    本論文採用Depth-wise Separable Convolution來實作喚醒詞辨識模型,使用Depth-wise Separable Convolution能大幅減少參數,對於在記憶體和運算限制的微控制器有很大的幫助。此系統會先經由梅爾倒頻譜系數(MFCC)將語音資料轉成特徵,再利用類神經網路訓練,學習喚醒詞的類別,辨識特徵是否有包含喚醒詞。
    ;In recent years, with the development of the IoT(Internet of Things) and deep learning, artificial intelligence has been applied in more places. The appearance of smart speakers has changed consumers’ habits and enabled them to directly give verbal instructions. This trend also shows that the future of home appliances will tend to use voice input commands, but most home appliances do not operate like the personal computer has an operating system to allocate computing resources, is organized by multiple micro- controllers to repeatedly perform functions. To control the microcontroller with voice commands, it is necessary to run a wake-up word recognition system on the micro- controller.
    In this thesis, we uses Depth-wise Separable Convolution to implement the wake word recognition model. Using Depth-wise Separable Convolution can greatly reduce the parameters, which is very helpful for microcontrollers with limited memory and computing. This system will first convert the voice data into features through MFCC, and then use neural network training to learn the types of wake-up words and identify whether the features contain wake-up words.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML174View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明