中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84276
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42142853      在线人数 : 1318
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84276


    题名: Linearly Independent Sets and Transcendental Numbers
    作者: 林宜萱;Lin, Yi-Hsuan
    贡献者: 數學系
    关键词: 線性獨立集;超越數
    日期: 2020-07-24
    上传时间: 2020-09-02 18:47:08 (UTC+8)
    出版者: 國立中央大學
    摘要: 在線性代數中我們知道任何佈於一體 (over a field) 的向量空間 (vector space) 存在至少一組基底。這篇碩士論文的初始動機起源於一個由呂明光教授提出的問題:對佈於有理數體 Q 上的向量空間實數體 R,是否存在一組確切的基底?對此目前我們沒有給出一個答案,但在網路上搜尋到 F. G. Dorais 提供了一組確切佈於 Q 上的線性獨立實數子集 T,並且 |T| = |R|。從集合 T 我們衍生出一些例子,同樣是佈於 Q 上的線性獨立實數子集,並且其集合大小與 |R| 相同。由於代數數有無窮可數多個而實數有無窮不可數多個,另一個由呂明光教授提出的問題是決定 Dorais 提供的集合 T 中哪些數是超越數〔即,非代數數〕。為了回答這個問題,我們研讀 Edward B. Burger 和 Robert Tubbs 的書 Making transcendence transparent. An intuitive approach to classical transcendental number theory。這個問題還沒被解決,然而 Burger
    與 Tubbs 的書中介紹了 Liouville 數〔一種特別的超越數〕,在此我們導出一些例子作為練習。;It is known in linear algebra that every vector space over a field has a basis. The motivation of this thesis is to answer a question asked by Professor Ming-Guang Leu: Is there an explicit basis for the field R of real numbers over the field Q of rational numbers? To that we have yet no answer. However, it is found on the Internet that F. G. Dorais provides an explicit linearly independent subset T of R over Q with |T| = |R|. Inspired by the set T, we give some examples of linearly independent subsets of R over Q with the same cardinality as |R|. Since there are countably many algebraic numbers while there are uncountably many real numbers, another question asked by Professor Leu is to determine which number in the set T, given by Dorais, is a transcendental number (i.e., not an algebraic number). To answer the question, we study the book Making transcendence transparent. An intuitive approach to classical transcendental number theory by Edward B. Burger and Robert Tubbs. The question is not yet answered. However, in Burger and Tubbs′ book, Liouville numbers (a special type of transcendental numbers) are introduced, and we derive some examples of Liouville numbers as exercises.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML233检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明