中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84395
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 58631173      Online Users : 1523
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/84395


    Title: 應用深度學習於盲源分離之實現
    Authors: 陳又彰;Chen, You-Zhang
    Contributors: 機械工程學系
    Keywords: 深度學習;盲源分離;deep learning;blind source separation
    Date: 2020-08-24
    Issue Date: 2020-09-02 19:16:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文旨在建構一套盲源分離軟體,並導入深度學習演算法,以此實現音頻擷取時的降噪功能,並於未來應用於智慧製造的領域。
    實驗流程方面,本論文先以乾淨的音源訊號進行模型訓練,以此驗證本論文建構之軟體的正確性,再將各式噪音與原始訊號合成,研究應用深
    度學習於音頻降噪實現時最佳的模型訓練方式。;The propose of the thesis is to build a blind source separation program which based on deep learning algorithm. The goal is to achieve noise reduction while capturing sound signals, and to applicate in intelligent manufacturing in the future.
    The process of experimentation is training the model with clean audio signal at first. It would verify if the program be written properly. After the verification, the original signal combined with noise would be used to train the model for researching the best training method on noise reduction.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML229View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明