中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84422
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40882487      Online Users : 2789
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84422


    Title: 2019年鹿林山背景生質燃燒氣膠傳輸特性及其對大氣光學影響
    Authors: 林寬昱;Lin, Kuan-Yu
    Contributors: 環境工程研究所
    Keywords: 鹿林山測站;生質燃燒;長程傳輸氣膠化學及光學特性;Mt. Lulin station;Biomass burning;Transported aerosol chemical and optical properties
    Date: 2020-08-17
    Issue Date: 2020-09-02 19:37:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 中南半島生質燃燒(Biomass Burning, BB)氣膠傳輸分布廣泛,對大氣環境有重大影響。本文在鹿林山背景監測站 (海拔2,862 m)分別於 2018年 10、11月(秋季)及2019年3、4月(春季)觀測BB及其他氣流來向大氣氣膠化學特性,並評估氣膠化學成分對大氣光學的影響。在正式採樣前,本文以 Z-test檢定確認非常陡峭切割旋風集塵器(Very Sharp Cut Cyclone, VSCC)與衝擊板(Impactor)採集PM2.5濃度並無顯著差異(n=36; p=0.42),但VSCC對於採集濃度的回應比 Impactor好,因此,本文使用VSCC採集的PM2.5。
    2018 年秋季PM2.5 (氣動直徑小於或等於2.5 μm粒狀物)和 PM10 (氣動直徑小於或等於10 μm粒狀物)質量濃度分別為2.8 ± 1.6和4.1 ± 2.2 μg m-3,PM2.5占PM10質量濃度的0.68。秋季期間氣流傳輸來向可分為自由大氣(Free Troposphere, FT)及人為污染(Anthropogenic, AN)。FT 類型PM2.5污染來源較紛雜;AN 類型PM2.5來源推論為固定源與BB,PM2.5-10來源則主要為移動源。
    2019 年春季PM1 (氣動直徑小於或等於1.0 μm粒狀物)、PM2.5、PM10質量濃度分別為12.3 ± 9.1、15.2 ± 9.9、18.9 ± 11.3 μg m-3,顯示PM1主導鹿林山氣膠質量濃度。BB傳輸期間,PM1、PM2.5、及PM10質量濃度分別高達22.0 ± 7.2、25.4 ± 7.7、30.0 ± 9.0 μg m-3,PM1/PM10為 0.73,顯然BB為春季氣膠主要污染源且由更細粒徑氣膠主導,PM1有機碳 (OC)、元素碳 (EC)、水溶性無機離子的主要成分分別為OC3、EC1-OP、SO42-,SO42-來源推論為中南半島與中國南方工業源。
    為了探討氣膠的氣候效應,本文以 Revised IMPROVE模式估算PM2.5 化學成分消光係數,發現與自動儀器量測的氣膠消光係數有良好相關性 (R2 > 0.86),春季氣流(FT, AN, BB類型)和秋季氣流(FT和AN類型)都以有機物和硝酸銨為消光係數主導化學成分。此外,春季和秋季各類氣流氣膠的單一反照率都大於 0.85,顯示氣膠具有強散光特性,對於氣候暖化有減緩作用。
    ;Biomass burning (BB) aerosol transported from Indochina spreads broadly
    and thus influences the atmospheric environment significantly. This study
    observed chemical properties of the atmospheric aerosol transported from BB
    and other orientations in October and November (autumn) in 2018 and March
    and April (spring) in 2019, respectively, at Mt. Lulin (2,862 m a.s.l.), and
    assessed the atmospheric optical effects from the aerosol. Before aerosol
    collection, this study applied a Z-test (n=36; p=0.42) to find no significant
    differences for the collected PM2.5 mass concentrations betwee Very Sharp Cut
    Cyclone (VSCC) and Impactor, but the concentration from VSCC responded
    to PM2.5 concentration variations better than Impactor. Consequently, this study
    adopted the VSCC for aerosol collection in the following PM2.5 collection.
    The mass concentrations of PM2.5 (particulate matter with an aerodynamic
    diameter less than or equal to 2.5 μm) and PM10 (particulate matter with an
    aerodynamic diameter less than or equal to 10 μm) were 2.8 ± 1.6 and 4.1 ± 2.2
    μg m-3, respectively, in autumn of 2018; with PM2.5/PM10 at 0.68. The
    orientations of the transported air masses could split into Free Troposphere (FT)
    and Anthropogenic (AN) types. The sources of PM2.5 from the FT type were
    various. In contrast, the inferences on source contributions of PM2.5 from the AN
    type were from stationary sources and BB, and PM2.5-10 was from mobile sources.
    The mass concentrations of PM1 (particulate matter with an aerodynamic
    diameter less than or equal to 1 μm), PM2.5, and PM10 were 12.3 ± 9.1, 15.2 ±
    9.9, and 18.9 ± 11.3 μg m-3, respectively, in spring of 2019. It indicated that PM1
    dominated aerosol mass concentration at Mt. Lulin. During the BB transported
    period, the mass concentrations of PM1, PM2.5, and PM10 were as high as 22.0 ±
    7.2, 25.4 ± 7.7, and 30.0 ± 9.0 μg m-3, respectively. The ratio of PM1/PM10 was
    0.73, which demonstrated that BB was the main aerosol source and finer sizes
    dominating the spring BB aerosol. The main components of PM1 organic carbon
    (OC), elemental carbon (EC), and water-soluble inorganic ions were OC3, EC1-
    OP, and SO4
    2-, respectively. The sources inferred for SO4
    2- was from Indochina
    and industrial sector in southern China.
    For the inference of climatic effect, this study estimated the atmospheric
    extinction coefficient from PM2.5 chemical components using the Revised
    IMPROVE model and compared well with that from the automated instruments
    (R2
    > 0.86). The dominant chemical components were organic matter and
    ammonium nitrate for the atmospheric extinction coefficients in the air masses
    of spring (FT, AN, and BB types) and autumn (FT and AN types). In addition,
    the values of the single scattering albedo were larger than 0.85 for spring and
    autumn. It showed that the atmospheric aerosol was with strong light-scattering
    characteristics to mitigate climate warming.
    Appears in Collections:[Graduate Institute of Environmental Engineering ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML147View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明