English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43365648      線上人數 : 944
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84774


    題名: 以離散元素法與多體動力學耦合方法探討具阻尼顆粒機構系統的減振機制:實驗驗證與工程應用;A Study on Vibration Reduction for Mechanism Systems with Damping Particles by Using Coupled Discrete Element Method and Multi-Body Dynamics: Experimental Validation and Engineering Application
    作者: 鍾雲吉;吳育仁
    貢獻者: 機械工程學系
    關鍵詞: 阻尼顆粒;偏心轉子機構系統;離散元素法;多體動力學;雙向耦合;實驗驗證;damping particle;eccentric rotor;discrete element method;multi-body dynamics;two-way coupling;experimental validation
    日期: 2020-12-08
    上傳時間: 2020-12-09 10:55:37 (UTC+8)
    出版者: 科技部
    摘要: 振動抑制一直以來為機構傳動系統的重要課題,顆粒阻尼技術具有顯著減振效果、能耐高溫惡劣環境、附加質量小、且對原結構系統的配置較無影響等優點,因此該項技術已廣泛應用在土木工程、機械工程與航空工程等領域。本計畫以離散元素法與多體動力學耦合方法探討具阻尼顆粒機構系統的減振機制,本研究引進顆粒阻尼技術應用至偏心轉子機構系統,平衡離心慣性力,降低運轉時的振動,並發展離散元素法與多體動力學耦合技術,探索阻尼顆粒體與機械元件的交互作用,準確地分析顆粒阻尼機制。首先為驗證耦合方法的合理性,規劃活塞式顆粒阻尼機構實驗與具阻尼顆粒箱體振動實驗,並進行對應的耦合電腦模擬,探討實驗與模擬兩者振動行為差異的原因,用以修正電腦模擬的耦合模式。確定採用之耦合模式的合理性與正確性後,再進一步將此耦合技術分析具阻尼顆粒偏心轉子機構系統,同時探討顆粒阻尼器配置位置、顆粒材質與顆粒填充率對偏心轉子機構減振效益的影響,進而達到減振的最佳化設計。本計畫發展的離散元素法與多體動力學耦合方法,包含離散元素數學模型的建立與Euler-Lagrange數學模型的推導。本計畫透過驗證合理的耦合模型計算内部微觀物理量,包含摩擦損失能量,顆粒碰撞損失能量,內部應力與應變 (stress and strain)、粒子體積佔有率 (solid fraction) 、力量傳遞鏈 (force chain)、配位數 (coordination number) 及顆粒間的組構 (fabric),找尋這些微觀物理量與機構總體動力特性的關聯性,進行多尺度 (巨觀、中觀與微觀) 行為之分析,藉以更深入地探究具阻尼顆粒機構系統的減振機制。 ;Vibration suppression has always been an important task for transmission systems. Particle damping technology shows the following advantages: effective vibration reduction, resistance to high temperature and harsh environments, small additional mass, and little influence on the configuration of the original structures. Accordingly, this technology has been widely used in civil engineering, mechanical engineering and aeronautical engineering. This study proposes a coupled method with discrete element method (DEM) and multi-body dynamics (MBD) to explore the mechanism of vibration reduction for transmission systems that contain damping particles. This study applies the particle damping technology to eccentric rotor systems to dynamically balance the centrifugal inertia force and reduce vibration during operation. Firstly, in order to validate the coupled method, two sets of experiment, including particle-based thrust damper test and free vibration test of small devices with particle damper, dash-pot and spring, are performed. The corresponding coupled simulations are carried out. The comparison of dynamic characteristics between numerical simulation and physical experiment is made so as to modify the coupled method. This coupled method is further applied to analyzing an eccentric rotor system with damping particles. The effects of the layout of particle damper, the material of the particles, and the particle filling rate on the dynamic characteristics of the eccentric rotor system are further explored to attain the optimal design of vibration reduction.The study develops a coupled method with discrete element mathematical models for damping particles and Euler-Lagrange mathematical models for the mechanical parts. After careful validation for the proposed coupled DEM-MBD model, the meso and micro behaviours (meso properties: solid fraction, strain and stress; micro properties: friction loss energy, collision loss energy, force chain, coordination number and fabric) will be evaluated. The mechanism of vibration reduction for transmission systems with damping particles will be systematically explored. This project will provide useful and valuable strategies for DEM and MBD applications to realistic engineering problems in manufacturing industries.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[機械工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML160檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明