English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34622124      線上人數 : 745
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84972


    題名: 自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質;On the microstructure and property of 3-D Cu-Ni alloying micro features electrodeposited from citrate
    作者: 許壬瀚;Ren-Han, Hsu
    貢獻者: 材料科學與工程研究所
    關鍵詞: 微陽極導引電鍍;銅鎳合金;葡萄糖感測器;檸檬酸鈉螯合物;銅鎳電鍍分佈;場發射電子微探分析;MAGE;Copper-Nickel alloy;glucose sensor;citrate chelate;distribution of copper –nickel electrodeposition;EPMA
    日期: 2021-01-29
    上傳時間: 2021-03-18 17:05:01 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文採用微陽極導引電鍍法,自含銅、鎳之檸檬酸鈉鍍浴中製備銅鎳合金微柱,內容在探討析鍍物之表面形貌、組成、晶體構造與性質受鍍浴pH值與陰、陽兩極偏壓之影響。結果顯示:在4.0 V偏壓下,鍍浴pH 由4.5增加至6.5時,所得微柱的晶粒稍有增大(由13nm增加至14nm),表面形貌趨向平坦化,所含鎳由33.5%增至54.8%。在鍍浴pH 4.5下,電壓自4.0 V增高至4.6 V,微柱的晶粒稍有細化(由13nm到11nm),鎳含量由33.5%增至52.6%。XRD分析顯示微柱為異質同晶(isomorphous )之銅鎳合金。進一步EPMA分析顯示: 微柱內部銅與鎳之分布之均勻性受實驗條件之影響。鍍浴pH 自 4.5升高到6.5 有助於微柱中銅與鎳分布較均勻化。因微柱屬於奈米晶體,以奈米壓痕器測得硬度可高達6.9 GPa,比一般商用銅鎳合金(0.6~1.65GPa)高出許多。
    藉由動態陰極極化曲線、配合定電位下電化學阻抗頻譜之分析,可以說明電壓改變情況下銅鎳合金組成差異之反應機制。經COMSOL軟體實驗中之電場分布,有助於說明微柱之表面形貌與組成之變化。陰、陽極間之圓柱形電場,顯示柱心處電場較強(電力線分布較高),由陰極極化結果可知電場較強,鎳優先析鍍,因而微柱中心鎳組成偏高,鍍浴若由pH4.5上升到6.5,柱中心與周圍之電場分布差逐漸接近,且銅之螯合物以(Cu2Cit2H?2)4?)比(Cu2Cit2H?1)3?占優勢,促使銅、鎳有較均勻之分布。量測電流對時間關係圖可估計析鍍電量,對應微柱重量,可計算出微柱析鍍之電流效率,電流效率最高達到76.1%。電壓增大與pH的升高下,電流效率下降。
    應用上,銅鎳合金微柱的恆電位實驗有助於研究其作為葡萄糖感測器的可行性。結果顯示: 微柱組成會影響電流密度偵測之線性範圍,(銅/鎳at%)若在60/40 at%時,線性區域在0mM至3.0mM之間,比組成銅/鎳at%在40/60時,線性區域在0mM至0.25mM稍大,然而後者對葡萄糖濃度靈敏度較高。本製程所得銅鎳微柱對葡萄糖感測之靈敏度,比其他材料高,由文獻得知原因可能是因為微柱的奈米晶粒,使電極表面上的電催化活性位置大幅增加,增進電子轉移之數量。
    ;Micro-anode guided electroplating (MAGE) process was employed to prepare copper-nickel alloy micro-pillars in the citrate bath containing nickel and copper ions.The effect of the bath pH and the voltage between cathode and anode on the surface morphology, composition, crystal structure and the properties of the pillars was studied.The results indicated that for the MAGE conducted at 4.0 V, with the bath pH increasing from 4.5 to 6.5, the micropillars were fabricated to show a more fattened surface, a slight increase in their grain sizes from 13 nm to 14 nm, and an increase of Ni-content 33.5% to 54.8%. On other hand, for MAGE performed at pH 4.5 with increasing the voltage from 4.0 V to 4.6 V, the micropillars revealed a little decrease in grain sizes (from 13nm to 11nm), and the nickel content increased from 33.5% to 52.6%. XRD analysis showed that the micropillars belonged to isomorphous Cu-Ni alloys. Analysis by EPMA revealed that concentrated nickel was found at the central pillars as they fabricated from the bath with pH of 4.5. The distribution of Ni and Cu tended to more uniform when the MAGE performed in the bath with increasing pH from 4.5 to 6.5,. Because of the nanocrystals inside the micropillars, the hardness evaluated by a nanoindenter testing displayed the highest value at 6.9 GPa, which is much higher than those (0.6 ~ 1.65 GPa) for common commercial Cu-Ni alloys.
    Cathodic polarization curve can explain the changing ratio of Cu-Ni alloy at variable voltages. The simulation of electric field distribution in MAGE by COMSOL gives the way to comprehend dependence of the surface morphology and composition of the micropillars on the experimental conditions. The chelate change promote a more even distribution of copper and nickel. The current efficiency can be calculated by current vs. time and the weight of micro-pillars. The current efficiency can reach to 76.1%.
    Constant potential experiment can study the feasibility of Cu-Ni alloy micropillars as glucose sensors. The results of the studys show that the composition will affect the linear range of current density detection.When (Cu-Ni at%) is 60/40 at%, the linear region is 0mM to 3.0mM; When (Cu-Ni at%) is 40/60 at%, the linear region is 0 mM and 0.25 mM.The increasing of nickel results smaller linear region but the glucose concentration is more sensitive.The Cu-Ni micropillars in this process obtain higher sensitivity than other materials because the grains of micropillars are nanocrystalline Nanocrystal grains of the micropillars greatly increase the electrocatalytic active sites on the electrode surface and increase the amount of electron transfer.
    顯示於類別:[材料科學與工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML159檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明