English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78818/78818 (100%)
Visitors : 34513047      Online Users : 549
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84974

    Title: VHL與KIM-1的功能關係研究;Study of the functional relationship between VHL and KIM-1 in kidney tubular cells
    Authors: 阮氏金楓;Huong, Nguyen Thi Kim
    Contributors: 系統生物與生物資訊研究所
    Keywords: KIM-1組合式;VHL組合;ccRCC;移民;VHL-KIM-1雙擊倒;DEGs;KIM-1 knockdown;VHL knockdown;ccRCC;migration;VHL-KIM-1 double-knockdown;DEGs
    Date: 2021-01-25
    Issue Date: 2021-03-18 17:05:17 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 腎細胞癌( RCC)的發生和死亡率逐年增加。該病在早期大多數都無症狀,但
    轉移的機率高。在 RCC 亞型中,透明腎細胞癌(ccRCC)最常見,死亡人數最
    多。其中有超過 70%的 ccRCC 病例在 von Hippel-Lindau 抑癌基因(VHL)中攜
    中 Vhlh(小鼠 VHL 基因座)基因條件失活的小鼠模型,這小鼠模型會導致腎臟
    增生,炎性和纖維化病變。最初的微陣列分析確定了與野生型相比, HAVCR-1
    在突變小鼠腎臟中呈現高表達。 HAVCR-1(也稱為 KIM-1 或 TIM-1)是 1 型膜
    蛋白,已被公認是腎臟疾病的診斷標記。最近,一些研究還表明, KIM-1 在包
    括 ccRCC 的人類癌症中異常表達,所以我們假設 KIM-1 可能有助於 ccRCC 的
    發展。但是 KIM-1 和 VHL 之間的功能相關性仍然是未知的。在這裡,我們分別
    在有或沒有 VHL抑制的近端腎小管上皮細胞系(HK-2)中產生了 KIM-1抑制,
    我們發現組合式和 VHL-KIM-1 雙組合式有許多 DEG,並且使用 Ingenuity
    Pathway Analysis(IPA)對 DEG 進行富集分析,在 VHL 抑制的細胞中,炎症,
    類分析揭示了 4 個不同的基因組,它們在不同的基因敲低背景下顯示出不同的
    表達模式,表明 VHL 和 KIM-1 之間的功能關係可能不是簡單的線性途徑。有趣
    的是通過傷口癒合實驗對細胞遷移進行了測試,我們發現 VHL 基因敲落細胞中
    的 KIM-1 基因敲落可以抑制細胞遷移。我們的結果表明,與 VHL 單敲除相比,
    並且影響了腫瘤的發展途徑。因此,這些結果在未來可以用來創造新 ccRCC 或
    腎癌治療的標靶。;The occurrence and death rates of renal cell carcinoma (RCC) are increasing each year.
    However, this disease is mostly asymptomatic at an early stage but highly metastatic.
    Among the RCC subtypes, the clear-cell RCC (ccRCC) is the most prevalent and
    accounts for the most deaths. Importantly, more than 70% of the ccRCC cases carry
    either genomic or epigenetic defects in the von Hippel-Lindau tumor suppressor gene
    (VHL). Our laboratory has previously established a mouse model containing
    conditional inactivation of the Vhlh (the mouse VHL locus) gene in the kidney tubules,
    which results in hyperplastic, inflammatory, and fibrotic lesions in the kidneys. Initial
    microarray analysis identified high expression of HAVCR-1 in mutant mouse kidneys
    compared to wild-type. HAVCR-1 (also known as KIM-1 or TIM-1) is a type 1
    membrane protein and has been recognized as a diagnostic marker for kidney disease.
    Recently, several studies have also shown that KIM-1 is expressed abnormally in
    human cancers, including ccRCC. This leads us to hypothesize that KIM-1 may
    contribute to the progression of ccRCC. However, the functional correlation between
    KIM-1 and VHL are still unknown. Here, we generated KIM-1 knockdown in proximal
    tubule epithelial cell line (HK-2) with or without VHL knockdown, and RNA sequencing analysis was performed to analyze the differentially expressed genes
    (DEGs) comparing control, VHL knockdown, KIM-1 knockdown, and VHL-KIM-1
    double knockdown. Many DEGs were found, and the enrichment analysis using the
    Ingenuity Pathway Analysis (IPA) software on DEGs showed that in VHL knockdown
    cells, inflammatory, proliferative, and mesenchymal transition pathways are increased,
    while cell death and apoptosis pathways are reduced, consistent with the tumorigenic
    property of these VHL-defective kidney cells. Heatmap clustering analysis revealed 4
    distinct groups of genes that show different expression patterns in different gene
    knockdown backgrounds, suggesting the functional relationship between VHL and
    KIM-1 is probably not a simple linear pathway. Interestingly, cell migration was tested
    by wound healing experiment, and we found that KIM-1 knockdown in VHL
    knockdown cells can inhibit cell migration. Our results showed that double knockdown
    of KIM-1 and VHL in HK-2, compared with VHL single knockdown, reduces the
    expression of multiple cytokines-induced inflammation pathways, and influences
    tumor progression pathways. Thereby, these results together point to a new ccRCC or
    renal cancer treatment targets in general.
    Appears in Collections:[系統生物與生物資訊研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明