English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42118435      線上人數 : 876
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/85613


    題名: 基於LSTM方法於塗佈機異常分類之研究;Anomaly Classification for Coating Machine Based on LSTM Approach
    作者: 簡義宭;Chien, Yi-Chun
    貢獻者: 工業管理研究所
    關鍵詞: 智慧製造;預測性維護;主成分分析;羅吉斯迴歸;長短期記憶網路
    日期: 2021-07-06
    上傳時間: 2021-12-07 11:08:28 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著工業 4.0 的推行,智慧化、數位化及自動化是製造產業發展的重要趨勢,大多數的工廠也漸漸的將智慧製造導入,希望能藉此提高生產效率、降低設備故障率及能源的消耗、敏捷製造和產品改善。這也代表機械必須朝「精密化」、「智慧化」的方向發展,以具備故障預測、精度補償、自動排程等功能。機器的穩定度成了多數工廠在乎的問題,如何有效且精確地執行維護策略是多數工廠必須面對的問題,因此近年來預測性
    維護逐漸被推廣出來。基於前述,本研究主要希望能在設備發生故障前發現異常,以利維護人員提前進行修護,目的在於提早修復異常、避免產出不良品及機器的停機。
    本研究使用 A 公司所提供塗佈機上感測器的歷史數據進行分析,以預測性維護(Predictive maintenance)為主要目標。分別使用主成分分析(Principal Component Analysis, PCA)以及羅吉斯迴歸(Logistic regression)進行降維,再利用長短期記憶神經網路(Long Short-Term Memory, LSTM)來建置模型,以利維修人員能提前做出決策,確保生產線的順暢,進而降低損失。;With the implementation of Industry 4.0, intelligence, digitalization and automation are important trends in the development of the manufacturing industry. Most factories have gradually introduced smart manufacturing, hoping to improve production efficiency, reduce equipment failure rates and energy consumption, Agile manufacturing and product improvement. This also means that machinery and equipment must develop in the direction of "precision" and "intelligence" to have functions such as failure prediction, accuracy compensation, and automatic scheduling. The stability of the machine has become a problem that most factories care about. How to effectively and accurately implement maintenance strategies is a problem that most factories must face. Therefore, predictive maintenance has
    gradually been promoted in recent years. Based on the foregoing, this research mainly hopes to find abnormalities before equipment failures, so that maintenance personnel can repair them in advance. The purpose is to repair abnormalities early and avoid production of defective
    products and machine shutdowns.
    This study uses the historical data of the sensors on the coating machine provided by Company A for analysis, with predictive maintenance as the main goal. Principal Component
    Analysis (PCA) and Logistic regression are used fordimensionality reduction, and Long Short Term Memory (LSTM) is used to build the model to facilitate maintenance. So that personnel can make decisions in advance to ensure the smoothness of the production line, thereby reducing losses.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML116檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明