English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634017      線上人數 : 3453
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86059


    題名: LSAM 混和 LSGM 及其 Cr、 Zn 摻雜作為固態氧化物燃料電池電解質之可行性研究;Mixing of LSAM with LSGM doped with Cr and Zn as a feasible electrolyte of solid oxide fuel cells
    作者: 符禎元;Fu, chen-yuan
    貢獻者: 材料科學與工程研究所
    關鍵詞: 固態氧化物燃料電池;溶膠凝膠法;LSGM電解質材料;LSAM電解質材料;過渡元素摻雜;Cr摻雜;Zn摻雜;solid oxide fuel cell (SOFC);sol-gel method;LSGM electrolyte material;LSAM electrolyte material;transition element doping;Cr doping;Zn doping
    日期: 2021-10-12
    上傳時間: 2021-12-07 11:58:05 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文在以低廉之鑭鍶鋁鎂(LSAM)氧化物和鑭鍶鎵鎂(LSGM)氧化物互相混合,製作LSGM-LSAM混和,探討其作為固態氧化物燃料電池電解質之可行性。首先依溶膠凝膠法來製備La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM)與La0.9Sr0.1Al0.9Mg0.1O3 (LSAM)兩種粉末,再分別以0、25、50、75及100 wt.%等不同之比例將LSAM粉末與LSGM互相混和,燒結後探討此混和材料之結晶結構、形貌、導電率。隨後,將混合粉末製作固態氧化物燃料電池,進行測試。結果顯示:含25 wt.% LSAM之混和電解質,其電池功率密度約為純LSGM電解質電池之91%。
      上述含25 wt.% LSAM之混和電解質,分別摻雜1.0 mol % Cr與1.0 mol % Zn元素,在800 oC下量測離子導電率結果顯示:摻雜Cr電解質之離子導電率下降(0.038 S/cm < 0.073 S/cm),且導電活化能降低(1.37eV < 1.56 eV);摻雜Zn電解質之離子導電率增高(0.088 S/cm > 0.073 S/cm),導電活化能降低(1.35eV < 1.56 eV)。摻雜Cr電解質之熱膨脹係數為12.6×10-6/K;摻雜Zn電解質則為22.2×10-6/K,後者與陰極之膨脹係數(20.6×10-6/K)匹配度較高。隨後,製作陽極支撐型SOFC電池,經800 oC量測電池功率,結果顯示:摻1.0 mol % Zn含25 wt.% LSAM混和電解質之電池,其功率較高(173.6 mW/cm2 > 124.6 mW/cm2)。經濟性評估顯示:摻雜1.0 mol % Zn含25 wt.% LSAM混和電解質製作之SOFC,電池功率並不比純LSGM電池遜色,但成本降低約23.7%,,預期具有取代純LSGM電解質製作固態氧化物燃料電池之潛力,創造更高之經濟效益。
    ;In this study, low-cost lanthanum strontium aluminum magnesium (LSAM) oxide and lanthanum strontium gallium magnesium (LSGM) oxide are mixed with each other to make LSGM-LSAM composite, and explore its feasibility as a solid oxide fuel cell electrolyte. First, prepare La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) and La0.9Sr0.1Al0.9Mg0.1O3 (LSAM) powders by the sol-gel method, and then mix the LSAM powder and LSGM in different ratio (0, 25, 50, 75 and 100 wt.%), and discuss the crystal structure, morphology, and conductivity of the mixed material after sintering. Subsequently, the mixed powder was made into a solid oxide fuel cell for testing. The results show that the power density of the mixed electrolyte containing 25 wt.% LSAM is about 91% of that of the pure LSGM electrolyte support cell.
    The above-mentioned mixed electrolyte containing 25 wt.% LSAM was doped with 1.0 mol% Cr and 1.0 mol% Zn respectively. The ion conductivity measured at 800 oC showed that the ionic conductivity of the doped Cr electrolyte decreased (0.038 S/ cm <0.073 S/cm), and the activation energy of conduction decreases (1.37eV <1.56 eV); the ionic conductivity of doped Zn electrolyte increases (0.088 S/cm> 0.073 S/cm), and the activation energy of conduction decreases (1.35eV < 1.56 eV). The thermal expansion coefficient of the doped Cr electrolyte is 12.6×10-6/K; the doped Zn electrolyte is 22.2×10-6/K, and the latter was more suitable with the expansion coefficient of the cathode (20.6×10-6/K). Subsequently, an SOFC anode-supported cell was fabricated, and the power density was measured at 800 oC. The results showed that: doped with 1.0 mol% Zn and 25 wt.% LSAM mixed electrolyte has a higher power (173.6 mW/cm2> 124.6 mW/cm2 ). Economic evaluation shows that: SOFC doped with 1.0 mol% Zn and 25 wt.% LSAM mixed electrolyte, power density is not inferior to pure LSGM cell, but the cost is reduced by about 23.7%, and it is expected to replace pure LSGM electrolyte to produce solid oxide The potential of fuel cells creates higher economic benefits.
    顯示於類別:[材料科學與工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML104檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明