English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41627796      在线人数 : 2456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86763


    题名: 一種結合影像拼接與對比強化的環景照建構方法;A Combined Method of Image Stitching and Contrast Enhancement for Constructing Panoramas
    作者: 魏辰晏;Wei, Chen-Yan
    贡献者: 數學系
    关键词: 尺度不變特徵轉換;隨機抽樣一致法;多頻段融合;對比強化;自適應變分模型;分裂布雷格曼法;scale-invariant feature transform;random sampling consensus;multi-band blending;contrast enhancement;adaptive variational model;split Bregman method
    日期: 2021-09-28
    上传时间: 2021-12-07 13:11:29 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文主要研究一種結合影像拼接與對比強化技術的環景照建構方法。關於影像拼接的部份,我們主要以 Brown-Lowe 對於影像拼接的探討為基礎,對每張影像使用尺度不變特徵轉換演算法提取特徵,對於各張影像的特徵進行特徵匹配,並且使用隨機抽樣一致法,消除錯誤匹配的特徵點對,並篩選出合適的單應性矩陣用於拼接的座標轉換,最後再利用多頻段融合技術,使得在拼接銜接處的色彩看起來更為自然。在完成影像拼接後,我們接續一種由 Hsieh-Shao-Yang 所提出的對比強化的自適應變分模型,其中使用 k -means 演算法將影像劃分成 k 個部分,對於此自適應的變分模型通過交錯最小化演算法中的分裂布雷格曼法將模型拆解成三個子問題處理,並使用最簡易色彩平衡讓整體飽和度提升。最後我們提供一系列的影像拼接數值實驗驗證此方法對建構環景照的有效性。;In this thesis, we study a method for constructing panoramas that combines image-stitching and contrast enhancement techniques. Based on the works of Brown and Lowe for image stitching, we use the scale-invariant feature transform algorithm to extract features for each image, perform feature matching for each image feature, apply the random sampling consensus method to eliminate the mismatched feature point pairs, and construct the appropriate homography matrix for the coordinate transformation, and finally use the multi-band blending technology to make the color difference at the splicing joints look more naturally. After completing the image stitching, we employ an adaptive variational model proposed by Hsieh-Shao-Yang to enhance the contrast of the stitched image, where we use the k -means algorithm to divide the image into k parts. The split Bregman method is applied to split the problem into three sub-problems to solve the minimization problem associated with the adaptive variational model. We also use the simplest color balance technique to increase the overall saturation. Finally, we provide a series of image stitching numerical experiments to demonstrate the effectiveness of the proposed combined method.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML169检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明