English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42772068      線上人數 : 1071
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86969


    題名: 南海淺海區衛星測深和底棲生境圖;SATELLITE-DERIVED BATHYMETRY AND BENTHIC HABITAT MAPPING IN SHALLOW AREA OF SOUTH CHINA SEA
    作者: 阮文安;An, Nguyen Van
    貢獻者: 環境科技博士學位學程
    關鍵詞: Planet Scope;Sentinel-2;ICESat-2;測深;Planet Scope;Sentinel-2;ICESat-2;benthic habitat;bathymetry;convolutional neural network
    日期: 2021-08-16
    上傳時間: 2021-12-07 13:33:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 海底地形資訊是改善底棲環境分類結果的關鍵因素。然而,獲取水深資訊並不容易且費用高,尤其是在偏遠島嶼。 ICESat-2 是一個衛載 LiDAR ,可提供含有地理位置的高度資訊,進而解決近岸地區測深的挑戰。在這項研究中,我們提出以ICESat-2 數據與光學影像結合的演算法,以擴展衛星測深的應用。在我們的實驗中選擇南中國海的五個島嶼地區,利用光譜特徵根據目標島嶼底棲物質的異質性分類進行並分析評估。結果顯示ICESat-2 和 Sentinel-2 影像的結合,判定係數可以達到0.75-0.95,且均方根誤差在 0.66-1.87 m,這五個區域的最深估計到 19-32 m。 本研究也提出使用PlanetScope 衛星影像和ICESat-2 數據同時進行水深估計和底棲分類。 利用深度不變指數(Depth Invariant Index, DII)和海底反射指數(Bottom Reflectance Index, BRI)來減少水體的影響,再採用機器學習算法,包括隨機森林 (Random Forest, RF)、支持向量機 (Support Vector Machine, SVM) 和卷積神經網絡 (Convolutional Neural Network, CNN) 來分類底棲物質。 此三個分類法的總體準確率於BRI 分別為 79.02%、83.05% 和 86.49%,而 DII分別為 79%、82.75%、84.2%。 成果清楚地展示水深資訊在分類中的重要性,此外CNN方法可以得到最佳的底棲分類結果。;Bathymetry information is a critical factor in improving the classification results of benthic habitats. However, obtaining the bathymetry data is not always easy and affordable, especially in remote islands. ICESat-2 is a space-borne LiDAR satellite that provides geolocated photon height that can resolve the challenges in bathymetric mapping in the nearshore region. In this study, the combination of ICESat-2 data with optical images is developed to extend the application of satellite-derived bathymetry (SDB). Five islands in different parts of the South China Sea are selected, analyzed, and evaluated in our proposed model. The clustering step is used to address the heterogeneity of benthic habitats by dividing the target islands into groups based on spectral characteristics. The results show that an integration of ICESat-2 and Sentinel-2 imageries can achieve R2 at 0.75–0.95 and RMSE at 0.66–1.87 m with the deepest pixels at 19–32 m across these five islands.
    This study also proposed a completed scheme for bathymetry estimation and integration of benthic classification using the PlanetScope satellite image and ICESat-2 data for the coastal region. Depth invariant index (DII) and bottom reflectance index (BRI) were utilized to reduce the water column′s effect. Moreover, two conventional machine learning algorithms including Random Forest (RF), Support Vector Machine (SVM) and a current deep convolutional neural network (CNN) were employed to address the benthic features. The overall accuracy of the three classifiers are 79.02%, 83.05%, and 86.49% with BRI compared to 79%, 82.75%, 84,2% of DII, respectively. These results clearly emphasize the importance of bathymetry information in the classification procedure. Moreover, the CNN approach can maximize the improvement in the benthic classification results in the coastal region.
    顯示於類別:[環境科技博士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML152檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明