本研究中使用微陽極導引電鍍法(Microanode-guided electroplating, MAGE)來製作鎳鎢合金三維微結構。使用線徑125 μm之白金線作為陽極,以線徑為0.643 mm之銅導線作為陰極,於焦磷酸浴中改變析鍍偏壓(5.6 V~6.2 V)與間距(50 μm~80 μm)等條件進行電鍍,希望製作出含鎳、鎢兩金屬元素之微柱與微螺旋結構。再透過SEM觀察表面形貌、EDS分析化學組成、XRD分析晶體結構及COMSOL模擬電場分布,尋求最佳的鎳鎢合金微柱之電鍍條件。再進一步使用循環伏安法、計時電位法、線性極化分析法來探討鎳鎢微柱在鹼性水溶液中的產氫表現。 結果顯示: 析鍍偏壓為6.0 V和間距為60 μm的情況下進行鎳鎢合金之電鍍時,最大的電場強度為118233 V/m,有最高的鎢含量42.3±0.8 at.%。在1.0 M KOH溶液中,也具有最佳的產氫效能,陰極峰值電流密度會有最大的-593.63 mA/cm2,且有最低的產氫起始過電位-0.2 V,在-300 mA/cm2下有最小的電位-0.25 V,最小的Tafel slope為75 mV/dec,最大的交換電流密度值為0.803 mA/cm2。 ;Micro-anode guided electrodeposition (MAGE) process was used to fabricate three-dimensional microstructures of Ni-W alloys in this study.Use platinum wire with a wire diameter of 125 μm as the anode, and a copper wire with a wire diameter of 0.643 mm as the cathode. Change the bias voltage (5.6 V~6.2 V) and spacing (50 μm~80 μm) in a pyrophosphate bath. The goal is to produce micro-pillars and micro-helical structures containing two metal elements of nickel and tungsten. Then observe the surface morphology through SEM, EDS analysis of chemical composition, XRD analysis of crystal structure and COMSOL simulated electric field distribution to find the best nickel-tungsten alloy micro-pillar plating conditions. Furthermore, cyclic voltammetry, chronopotentiometry, and linear polarization analysis were used to explore the hydrogen production performance of nickel-tungsten micro-columns in alkaline solutions. The results show that when nickel-tungsten alloy electroplating is performed with a bias voltage of 6.0 V and a spacing of 60 μm, the maximum electric field strength is 118233 V/m, and the highest tungsten content is 42.3±0.8 at.%. In 1.0 M KOH solution, it also has the best hydrogen production efficiency. The peak current density of the cathode will have the largest -593.63 mA/cm2, and the lowest hydrogen production initial overpotential -0.2 V, at -300 mA/cm2 There is the smallest potential -0.25 V, the smallest Tafel slope is 75 mV/dec, and the largest exchange current density is 0.803 mA/cm2.