English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42773967      線上人數 : 1230
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88375


    題名: 使用Sentinel -2 影像提出空間、光譜與時間的深度學習架構製作佛羅里達州西南部於2017年受艾瑪颶風影響之紅樹林退化圖;Proposed Spatial-Spectral-Temporal Deep Learning Architecture for Mangrove Degradation Mapping Affected by Hurricane Irma 2017 Using Sentinel-2 Data in Southwest Florida
    作者: 杰努庭;Jamaluddin, Ilham
    貢獻者: 遙測科技碩士學位學程
    關鍵詞: Sentinel-2;紅樹林;退化;颶風;卷積;LSTM;深度學習;Sentinel-2;mangroves;degradation;hurricane;convolutional;LSTM;deep learning
    日期: 2022-06-09
    上傳時間: 2022-07-14 00:58:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 紅樹林是生長在熱帶和亞熱帶氣候區周圍潮間帶的獨特植被,對人類及周邊生態系統有諸多益處(如海岸防護植被、儲碳植被等),紅樹林地圖是了解紅樹林狀況和狀況的重要訊息,衛星影像是廣泛用於紅樹林測繪的數據之一。自然災害事件可能導致紅樹林退化包括颶風事件。 在2017 年颶風艾瑪襲擊了佛羅里達州西南部沿海地區導致紅樹林退化。本研究的目的是受颶風艾瑪影響的紅樹林退化地圖提出空間-光譜-時間的深度學習 (DL) 架構。在這項研究中,原本研究區域內的紅樹林區域在颶風事件之後已經退化,透過艾瑪颶風前後的衛星圖像之間的關係可以更深入地了解退化的紅樹林地區。本研究使用免費提供的 Sentinel-2 圖像。所提出的 DL 架構由兩個子模型組成:第一個子模型是 pre-post 深度特徵提取器,利用卷積長短期記憶提取颶風事件前後衛星圖像的時空關係(ConvLSTM)和第二個子模型是典型的全卷積網絡(FCN)分類,將從第一個子模型中提取的特徵分為三類。根據實驗結果,該模型的算法輸出的完整和退化紅樹林類的交叉聯合(IoU)得分分別為96.47%和96.82%,而地圖用戶對生成的地圖的完整和退化紅樹林類的準確度分別為分別為 96.80% 和 95.40%。所提出的模型比其他現有的 FCN 模型(U-Net、LinkNet、FPN 和 FC-DenseNet)取得了更好的結果;Mangroves are unique vegetation that grows in the intertidal zone around tropical and subtropical climate areas and has many benefits for humans and the surrounding ecosystem (e.g. coastal protection vegetation, carbon storage vegetation, etc.). Mangrove map is important information to know the condition and status of mangrove forests. Satellite imagery is one of the data that is widely used for mangrove mapping. Some natural hazard events can cause mangrove degradation including hurricane events. In 2017, Hurricane Irma hit the southwest Florida coastal zone and caused mangrove degradation. The goal of this study is to propose spatial-spectral-temporal deep learning (DL) architecture for mangrove degradation mapping that was affected by Hurricane Irma. In this study, the degraded mangroves are the mangrove area before the hurricane but were degraded after the hurricane event. The relationship between satellite imagery before and after Hurricane Irma can provide a deeper understanding of degraded mangrove areas. This study used freely available Sentinel-2 imagery. The proposed DL architecture consists of two sub-models: the first sub-model is the pre-post deep feature extractor to extract the spatial-spectral-temporal relationship of satellite imagery before and after the hurricane event by using convolutional long-short term memory (ConvLSTM) and the second sub-model is typical fully convolutional network (FCN) classification to classify the extracted features from the first sub-model into three classes. Based on experiment results, the algorithm output intersection over union (IoU) score of intact and degraded mangrove classes from the proposed model are 96.47% and 96.82%, respectively, while the map user’s accuracy of intact and degraded mangrove class from the produced map are 96.80% and 95.40%, respectively. The proposed model achieved better results than other existing FCN models (U-Net, LinkNet, FPN, and FC-DenseNet).
    顯示於類別:[遙測科技碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML117檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明