中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/88394
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42142482      在线人数 : 1126
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88394


    题名: An Observation on 7-distance Set in Euclidean Plane
    作者: 瓦宇力;Budianto, Wahyu Tri
    贡献者: 數學系
    关键词: 平面7-距離集;直徑圖;凸多邊形;planar 7-distance set;diameter graph;convex polygon
    日期: 2022-06-16
    上传时间: 2022-07-14 01:11:50 (UTC+8)
    出版者: 國立中央大學
    摘要: 在離散幾何中有個有趣的問題是尋找最大k-距離集。 即使看似簡單的最大平面7-距離集也還是未知的。

    此篇論文我們給出部分結論。 Erdös and Fishburn [1] 給出了16個點的平面7距離集, 但不知道是否是最大的。 我們將17個點的平面7-距離集以X_D的基數做分類, 這個數會介於2到17之間。 我們照著 Wei [2] 的思路研究17個點的平面7-距離集。

    我們證明9-13以外是不可能的, 但9-13的部分只能給出部分結論。
    ;It is known that obtaining maximum k-distance sets has been an interesting problem in discrete geometry. Even a seemingly not-difficult problem like the maximum cardinality of 7-distance set in R^2 is yet to be found.
    In this thesis we provide some partial results for this problem. Erdös and Fishburn [1] showed the 16-point 7-distance sets, but did not prove that 16 is the maximum. We observe whether there is any 17-point 7-distance set in R^2 based on the cardinality of X_D, where 2≤|X_D |≤17. We follow the method used in Wei [2] for this observation.
    We can only provide partial results for 9≤|X_D |≤13, but for the other parts, we prove that there is no 17-point 7-distance set with that value of |X_D |.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML90检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明