English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42801512      線上人數 : 1080
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89035


    題名: NSGA-II for solving a bicriteria general job shop scheduling problem with layers
    作者: 江欣諭;Chiang, Hsin-Yu
    貢獻者: 工業管理研究所
    關鍵詞: 零工式排程;工件回流;雙目標;分離弧線圖;非支配排序遺傳演算法;Job shop problem;recirculation;bi-objective;disjunctive graph;NSGA-II
    日期: 2022-07-05
    上傳時間: 2022-10-04 10:48:46 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究主旨在探討具有工件具回流特性的雙目標零工式排程問題,在此我們選擇最大化“stage-out”的數目以及最小化工件總延遲時間做為目標,以同時滿足短期排程規劃及長期排程規劃。“stage-out”是實務中半導體環境的每日績效之一,我們將其轉換為最小化延遲工作總件數來優化它,而最小化工件總延遲時間則可視為長期目標,為因應不同的時程規劃,我們將給予兩目標不同的截止日期。另外,我們建立了一個新的分離弧線圖,其中每個工件都具有多個層級,每個層級包含多個操作,而在層和層之間有額外的弧線去界定各層級的順序。
    針對我們研究的問題,我們提出了不同以往的非支配排序遺傳演算法,將原本完全隨機的變異過程改由使用局部搜索中的鄰里結構取代,盡可能有依據的改善當前的解。在實驗中我們分成兩大部分,其中一個實驗我們和過去的實例做比較,另一個實驗則是針對改善後的非支配排序遺傳演算法評估效益,最終實驗結果也證明了此改善能有效的在短時間內找到還不錯的解。
    ;The main purpose of this study is to solve the bi-objective of job shop scheduling problem with recirculation. We choose to maximize the number of "stage-out" and minimize the total tardiness as objectives. Try to meet the requirements of short-term scheduling and long-term scheduling at the same time. "Stage-out" is one of the daily performances in a practical semiconductor environment, and we optimize it by converting it to minimize the total number of tardy jobs. While minimizing the total tardiness can be considered a long-term goal. For two different targets, we also give two different due dates. In addition, we proposed a new disjunctive graph, which contains multiple layers in a job and each layer contains multiple operations. There also introduce additional arcs between layers to define the processing order.
    In our research, we propose a non-dominated sorting genetic algorithm (NSGA-II) that is different from the traditional one. That we do the mutation operator with the neighborhood structures of local search and aim to find a good solution in a short time. In the experimental, we do two tests. First, we compare with benchmark instances to evaluate the performance of NSGA-II. Second, we compare the NSGA-II we proposed and the NSGA-II that all of the processes are depend on randomly generate. The result proves that this improvement can effectively speed up finding a good solution.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML69檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明