English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41642162      線上人數 : 1482
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89292


    題名: 發展高抗干擾非接觸式生理訊號監測系統;Develop Motion-resilience Non-contact Photoplethysmography Monitoring System
    作者: 劉依柔;Liu, Yi-Rou
    貢獻者: 生醫科學與工程學系
    關鍵詞: 非接觸式;光體積描記圖法;低解析度熱像;姿態辨識;non-contact;photoplethysmography;low-resolution thermal imaging;gesture recognition
    日期: 2022-09-06
    上傳時間: 2022-10-04 11:09:11 (UTC+8)
    出版者: 國立中央大學
    摘要: 疫情衍生出「零接觸」的醫療服務需求,藉由這些遠距、非接觸式裝置以量測生物醫學訊號是未來醫療科技的發展主向之一;老年人跌倒是公共衛生及其臨床重要的議題之一,偵測跌倒的市場需求始終熱絡。非接觸感測器,不但有利於長期連續監測及個人化醫療,擷取生理訊號、影像判讀並提供臨床可用之參考指標。
    遠程光體積描記圖法(Remote Photoplethysmography, rPPG),以非接觸式方式,相較傳統設備上具有高舒適性、高便利性、能配合長時間監控的優點,可多方應用於不同場合。本研究基於POS(Plane Orthogonal to Skin)並以Sub-band優化演算法,並以測試於rPPG的公開資料庫,同時使用其他現有的rPPG方法作為比較,並使用Bland-Altman分析,結果顯示,差值平均d ̅介於[-1.43~0.38],95%一致性的上下限(d ) ̅± 1.96 *Sd =[ -8.63 ~ 13.53, -9.00 ~ -16.40],優於其他比較方法。
    現行跌到偵測系統大多採配戴感測器方式進行分析,此類方法易將日常活動當作誤判,誤判率較高,也需基於使用者習慣下使用。而許多AI影像辨識技術,大多集中於可見光攝影機的影像領域,對於使用熱影像,解析度極低的熱影像上的技術仍舊不多,熱影像只是呈現人的大致形體,可保留更多個人隱私訊息,且不受環境光源設置影響。
    本研究以使用網路視訊攝影機基礎,藉由影像資訊,發展出基於皮膚反射模型開發一盲源分離演算法,該演算法可有效降低光源變化與動作運動干擾影響,穩定提升訊號除平均心率外,轉換成脈動波型(pulsatile waveform)以利視覺化效果及計算即時心率及呼吸分析;本研究核心以非接觸式環境感測器為主,將此延伸應用至兩相關主題,包含: (1) 基於影像感測器開發人臉影像追蹤rPPG盲源分離演算法與(2)基於深度學習於極低解析度熱像辨識人體姿態辨識初步結果。
    ;The measurement of biomedical signals by non-contact devices is one of the main directions for the future development of "zero-contact" medical technology, and falls in the elderly are critical to public health and clinical practice. Non-contact sensors are not only beneficial for long-term continuous monitoring and personalized medicine, but can also capture physiological signals, perform image interpretation, and provide clinically usable reference indicators.
    Compared with traditional equipment, Remote PPG has the advantages of high comfort and convenience. This study is based on POS (Plane Orthogonal to Skin) and adopts Sub-band optimization for robust rPPG, This algorithm can effectively reduce the impact of light source changes and motion interference and .tests it on the public database of rPPG while using other existing rPPG methods as a comparison, and using Bland-Altman analysis, the results show that the difference is that the averaged ̅ is between [-1.43~0.38], the upper and lower limits are 95% consistent (d ) ̅±1.96 *Sd = [-8.63~13.53, - 9.00 ~ - 16.40], which is more than the other the comparison method is better.
    fall detection systems use contact sensors for analysis can easily lead to misjudgment of daily activities. Many AI technologies are mostly focused on the imaging field of visible light cameras. For the use of thermal imaging, there are not many thermal imaging techniques with extremely low resolution. Thermal images, allowing more personal privacy information, are not affected by ambient light settings, so we use deep learning-based ultra-low resolution thermal images for human pose recognition and show preliminary results
    顯示於類別:[生物醫學工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML106檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明