English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25532722      Online Users : 365
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89754

    Title: Prototype Design of Smart Helmets
    Authors: 張仲良;Chung, Chang-Liang
    Contributors: 資訊工程學系在職專班
    Keywords: 物件偵測;物件辨識;交通號誌辨識系統;深度學習;YOLO;Object detection;Traffic Sign Recognition;Deep learning
    Date: 2022-07-28
    Issue Date: 2022-10-04 11:58:31 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 高級駕駛員輔助系統 (ADAS)主要用於四輪汽車。ADAS的一個重要組成部分是交通標誌識別,它可以識別重要的道路標誌,以提醒駕駛員應注意的道路法規或注意事項。不幸的是,現在仍然缺乏成熟的ADAS在摩托車上。在這項研究中,我們打算為摩托車構建一個輕量級的 ADAS,它可以識別道路標誌的重要部分,即限速牌和限速地面標誌。 YOLOv4 模型的兩個輕量級版本 YOLOv4-tiny 和 YOLOv4-tiny-3l通過遷移學習進行調整以識別限速標誌。為確保模型適用於嵌入式設備(即用於摩托車頭盔),應用模型剪枝技術提高模型效率。最後,將模型部署在 NVIDIA Jetson Nano 上並通過 TensorRT 加速以評估其性能。實驗結果表明,其中一個模型達到了27.72 FPS和96.19% 的mAP@0.50。;Advanced Driver Assistance Systems (ADAS) have been used in automobiles primarily in 4-wheeled vehicles. An essential part of ADAS is traffic sign recognition, which recognizes important road signs for the driver to warn the road regulations or matters that he should be aware of. Unfortunately, a mature ADAS for 2-wheeled motorcyclists is still lacking. In this research, we intend to build a lightweight ADAS for motorcyclists that recognizes the important portion of the road signs, i.e., the speed limit posts and speed limit ground signs. Two lightweight versions of the YOLOv4 models, YOLOv4-tiny and YOLOv4-tiny-3l, are tuned by transfer learning to recognize speed limit signs. To ensure the model is suited for embedded device (i.e., to be used on motorcyclist′s helmet), the model pruning technique is applied to improve model efficiency. Finally, the models are deployed on NVIDIA Jetson Nano and accelerated by TensorRT to assess their performance. The experiment results indicate that one of the models achieves mAP@0.50 at 96.19% with 27.72 FPS.
    Appears in Collections:[資訊工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明