中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89785
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 48117271      Online Users : 473
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89785


    Title: 基於雙變量及多變量貝他分布的兩個新型機率分群模型;Two probabilistic clustering models based on bivariate and multivariate beta distributions
    Authors: 徐永棚;Hsu, Yung-Peng
    Contributors: 資訊工程學系
    Keywords: 混和模型;雙變量和多變量貝他分布;分群;期望最大化演算法;Mixture Models;Bivariate and Multivariate Beta Distribution;Clustering;Expectation Maximization Algorithm
    Date: 2022-07-21
    Issue Date: 2022-10-04 11:59:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文提出了兩種基於機率模型的分群方法: Multivariate Beta Mixture Model (MBMM)和Flexible Bivariate Beta Mixture Model (FBBMM)。兩個模型的差異包含輸入的變量數(多變量和雙變量)和貝他分布的定義。我們基於期望最大化(Expectation-Maximization, EM)演算法、最大似然估計(maximum likelihood estimation, MLE)和最佳化方法sequential least squares programming optimizer (SLSQP)來估計模型參數。我們對人工合成和真實世界的資料集進行實驗,來確認MBMM和FBBMM的有效性。;This thesis presents two probability model-based clustering methods: the Multivariate Beta Mixture Model (MBMM) and the Flexible Bivariate Beta Mixture Model (FBBMM). Differences between the two models include the number of input variates (multivariate or bivariate) and the definition of the beta distributions. We estimate model parameters based on the Expectation-Maximization (EM) algorithm, the maximum likelihood estimation (MLE), and the sequential least squares programming optimizer (SLSQP). We conduct experiments on the synthetic and the real datasets to confirm the effectiveness of the MBMM and FBBMM.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML59View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明