在科技高速發展的世代,總伴隨著大量能源的消耗,而其中化石能源便一直是最為廣泛使用的能源。近幾年電動車的蓬勃發展,反映出各國皆積極開發替代化石能源的可能性,隨著環境保護意識不斷的提高、可再生能源逐漸受到了重視,使得熱電材料成為明日之星。熱電材料能夠回收廢熱,把逸散或多餘的熱能轉換成電能,使得總能量轉換效率得到進一步的提升,這種材料的特性讓它具有成為可再生能源的基礎。 本實驗參考前屆學長的N型Mg2SiSn實驗結果後發想,以調變鉍的摻雜和調變鎂矽與鎂錫的混和比例等方式,合成出有著更高功率因子、更低熱傳導率的N型Mg2SiSn熱電塊材,在200度時達到ZT最大值0.115。實驗過程中經由粉末摻雜、混和、冷壓成型、高溫燒結與金屬接觸的銜接等步驟,同時在各個階段對熱電塊材進行電性量測與分析,最後與本實驗室邱思萍同學研究的P型Mg2SiSn熱電塊材進行搭配,組合成單對PN熱電元件。期望本實驗能夠合成出有著優異熱電優值的Mg2SiSn熱電塊材,並製作成熱電元件。 ;During the technological development, a large amount of energy is consumed. Among them, fossil energy has always been the most widely used one. In recent years, vigorous development of electric vehicles reflects countries are actively developing the possibility of alternative energy. With the increasing environmental protection awareness, renewable energy has gradually attracted attention, making thermoelectric materials a rising star. Because thermoelectric materials could convert excess thermal energy into electrical energy, they further improve the overall efficiency. In this study, N-type Mg2SiSn is research topic. The N-type Mg2SiSn bulk was synthesized by bismuth doping and Mg2Sn/Mg2Si mixing for higher PF and lower thermal conductivity. During the experiment processes of powder doping, mixing, cold pressing, high temperature annealing, metal contact connection, and the electrical properties measurements of the material, finally, a single-pair PN thermoelectric element/device was made. It is expected that the Mg2(SiSn) bulk with excellent thermoelectric figure of merit can be made into thermoelectric applications.