English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42118727      線上人數 : 1080
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/91786


    題名: 以流程導向設計區塊鏈支援的電動車智能化生產流程;Process Oriented Design of Blockchain Supported Intelligent Production Process of Electric Vehicles
    作者: 莊仁皓;Chuang, Jen-Hao
    貢獻者: 工業管理研究所
    關鍵詞: 工業 4.0;智慧製造;區塊鏈技術;電動車;ARIS;BPMN;UML;Industry 4.0;smart manufacturing;blockchain technology;Electric vehicle;ARIS;BPMN;UML
    日期: 2023-06-19
    上傳時間: 2024-09-19 14:13:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 近十年來,隨著工業4.0的蓬勃發展以及大數據時代的來臨,為各行各業皆帶來了新形態的工作型態。工業4.0是由德國在2011年所提出的概念,藉由創新技術(工業物聯網、自動化機器人、雲端運算等等)及虛實整合系統(Cyber-Physical System, CPS)將實體世界與數位世界結合而成。大數據分析又稱巨量資料分析,藉由大量數據進行分析,幫助人工智慧進行運算達到製造生產線自動化,賦予製造生產線更多的智慧與彈性。
    目前工業4.0以及大數據分析技術正逐步應用至智慧製造中,使傳統的製造生產線發展成無人的智慧生產線。其中使用了大量的物聯網技術,對實時數據進行監控,同時藉由大數據分析技術精進製造與生產。然而面對如此新型態的數位模式,一旦衍生出資訊安全問題,將會對智慧生產線造成非常巨大的影響,導致智慧生產線停擺,最後造成企業巨大的損失。本研究期望在製造生產線上導入區塊鏈技術,結合工業4.0下的智慧生產線,藉由區塊鏈技術本身具有特性,例如:去中心化、加密、匿名性以及不可篡改性等等,確保智慧生產線的數據是安全的,使智慧生產線能夠永續運作。
    本研究將應用整合資訊架構(Architecture of Integrated Information System, ARIS)進行流程建模分析。利用業務流程模型和標記法(Business Process Modeling Notation, BPMN)對工業4.0下的電動車製造之智慧生產流程進行建模,同時結合區塊鏈技術建構數據流模型,使得新的智慧生產線具備高度自動化及高度安全性。當建構出新型態的企業流程後,藉由統一塑模語言(Unified Modeling Language, UML)將新流程轉化為軟體系統功能進行塑模工作,使得新型態的流程能夠更容易被完整實現。
    ;In the past ten years, with the vigorous development of Industry 4.0 and the advent of the era of big data, new forms of work have been brought to all walks of life. Industry 4.0 is a concept proposed by Germany in 2011 that combines the physical world with the digital world through innovative technologies (Industrial Internet of Things, automated robots, cloud computing, etc.) and virtual-real integration system (Cyber-Physical System, CPS). Big data analysis, also known as Massive Data Analysis that analyzes a large amount of data to help artificial intelligence perform operations to automate the production line. Big data analysis give the production line more wisdom and flexibility.
    At present, Industry 4.0 and big data analysis technology are being gradually applied to smart manufacturing, making the traditional manufacturing production line develop into an unmanned smart production line. Among them, a large number of Internet of Things technologies are used to monitor real-time data, and at the same time, manufacturing and production are strengthened through big data analysis technology. However, in the face of such a new type of digital model, once the information security problem is derived, it will have a huge impact on the smart production line, causing the smart production line to stop. Finally, it causes huge losses to the company. This paper expects to apply blockchain technology and combined with the smart production line under Industry 4.0 based on the characteristics of blockchain technology, such as decentralized, encryption, anonymity and immutability, etc. These characteristics ensure that the data of smart production line is Safe. Then the smart production line can operate continuously.
    This paper will apply the Architecture of Integrated Information System (ARIS) for process modeling analysis.Using Business Process Modeling Notation (BPMN) to model the smart production process of electric vehicle manufacturing under Industry 4.0, and combines blockchain technology to construct data flow. These make the new smart production line highly automated and High security. When a new type of enterprise process is constructed, the new process is transformed into software system functions by the Unified Modeling Language (UML) for modeling. Finally, the new type of process can be more easily to be implementation.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML18檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明