English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 36351875      Online Users : 1349
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/91819


    Title: 有機穿戴式熱電材料與元件開發;Development of Organic and Wearable Thermoelectric Materials and Devices
    Authors: 洪紹桓;Hong, Shao-Huan
    Contributors: 化學工程與材料工程學系
    Keywords: 有機熱電材料;有機—無機奈米複合物;生物可相容性;水凝膠;熱電化學電池;Organic thermoelectrics;Organic−inorganic nanocomposites;Biocompatible;Hydrogels;Thermogalvanic cells
    Date: 2023-08-12
    Issue Date: 2023-10-04 14:43:19 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著科技進步與工業的發展,能源的需求與永續發展已是現今人類社會所需面對的議題,生活中大量的低品廢熱(Low−grade thermal energy)若能善加利用便可得到可觀的能源。熱電發電裝置(Thermoelectric generators, TEGs)由於可直接將熱能轉換成電能的特性使其成為重點研究的對象,其次,由於穿戴式感測元件的日益發展,持續且穩定的供電需求使得TEGs於穿戴式發電元件上亦受重視。傳統無機熱電材料其本質剛硬與有毒的特性使其不適合做為穿戴式元件,相較之下有機熱電與離子熱電具備可彎曲性且有較高的Seebeck係數(數百至數千µV K−1),於穿戴式發電領域更有發展的潛力。
    本研究分為兩部分。第一部分為單壁奈米碳管(Single−walled carbon nanotubes, SWCNTs)-聚3−己烷基噻吩(poly (3−hexylthiophene), P3HT)之奈米複合物(SWCNT/P3HT nanocomposites)熱電元件結合生物可相容性(Biocompatibility)材料蠶絲蛋白(Silk fibroin),透過全溶液製程(All−solution processing)製備穿戴式熱電元件。透過薄膜厚度的優化可得到41.8 ± 0.9 µV K−1的Seebeck係數、1170 ± 52.8 S cm−1的電導率(Electrical conductivity)以及204 ± 4.6 μW m−1 K−2的功率因子(Power factor)。透過14個熱電元件單元的串聯,TEGs元件於溫差28.8 ℃下可達到22.6 mV的開路電壓(Open−circuit voltage)以及25.1 nW的功率輸出。第二部分為生物可相容性甲基丙烯酸明膠(Gelatin methacrylate, GelMA)製備高Seebeck係數之準固態熱電化學電池(Thermogalvanic cells, TGCs)。透過添加劑鹽酸胍 (Guanidium chloride, GdmCl)於水凝膠(Hydrogels)中之比例與水凝膠自身的空隙結構,經過優化後得到−22.2 mV K−1的Seebeck係數,此為純TGCs系統的最高值,並將9個TEGs元件串聯後於9 ℃的溫差下產生1.6 V的輸出電壓,在不外接電壓增壓器的情形下可直接點亮發光二極體。上述研究對於熱電元件製程與TGCs奈米結構分析提供製備高輸出穿戴式TEG一項解決的方案。
    ;With the development of the technology and industry, the demand for energy and sustainable development has become a critical issue in human society. The effective utilization of abundant low−grade thermal energy holds significant potential for obtaining substantial energy resources. Thermoelectric generators (TEGs) have garnered attention due to their capability of directly converting heat energy into electrical energy. Furthermore, the continuous and stable power supply requirements for wearable sensing devices have highlighted the importance of TEGs in the field of wearable power generation. Unlike traditional inorganic thermoelectric materials with the characteristics of inherently rigid and toxicity, in which are unsuitable for wearable applications. Instead, organic and ionic thermoelectric materials possess higher Seebeck coefficient (hundred to thousand μV K−1) and flexibility, making them promising candidates for wearable power generation devices.
    This research consists of two parts. The first part focused on the development of wearable thermoelectric devices using organic−inorganic hybrid materials (SWCNT/P3HT) combined with biocompatible silk−fibroin substrate. All−solution−processing fabrication was employed to produce the wearable TEGs. By optimizing the film thickness, the devices exhibited the Seebeck coefficient of 41.8 ± 0.9 µV K−1, an electrical conductivity of 1170 ± 52.8 S cm−1, and a power factor of 204 ± 4.6 μW m−1 K−2, respectively. By connecting 14 legs of these devices in series, a TEG achieved the open−circuit voltage of 22.6 mV and output power of 25.1 nW, under a temperature difference of 28.8 ℃.
    The second part was committed to the development of quasi−solid−state thermogalvanic cells (TGCs) with giant Seebeck coefficient by using biocompatible GelMA hydrogels. By adjusting the contents of GdmCl and optimizing the porous structure of the hydrogels, the maximum Seebeck coefficient of −22.2 mV K−1 was achieved, which was the highest value reported in TGCs systems. These investigations with the fabrication process and nanostructural analysis of thermoelectric devices provide a way for fabricating high−output wearable TEGs.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML59View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明