English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625816      線上人數 : 1966
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/91965


    題名: 有機金屬骨架衍生之氮摻雜碳修飾硫化錳硫化鋅複合材及硫化銅硫化鎳複合材作為鋰(鈉)離子電池負極材料之應用
    作者: 連家緯;Lian, Jia-Wei
    貢獻者: 化學學系
    關鍵詞: 有機金屬骨架;鋰離子電池;過渡金屬硫化物;Metal Organic Framework;Lithium Ion Battery;Transition Metal Sulfide
    日期: 2023-07-19
    上傳時間: 2024-09-19 14:44:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文分為兩部分,第一部分將硝酸錳作為金屬離子前驅物,1,3,5-苯三甲
    酸作為有機配位基,加入添加劑聚乙烯吡咯烷酮,製備成有機金屬骨架前驅物
    MnBTC,並探討最佳鍛燒硫化溫度,接著將硝酸錳和硝酸鋅作為金屬離子前驅
    物,製備成雙金屬有機金屬骨架前驅物 Mn/ZnBTC,並經過 700 ℃鍛燒硫化得
    到氮摻雜碳修飾硫化錳硫化鋅複合材(Mn,Zn)S/N-C,應用於鋰、鈉離子電池負極
    材料,其中(Mn,Zn)S/N-C (1-1)具有最好的電化學表現,組裝鋰離子電池半電池
    在電流密度 0.1 A/g 下循環 100 圈有 1003 mAh/g 的比容量,組裝成鈉離子電池
    半電池在電流密度 0.05 A/g 下循環 100 圈有 288.6 mAh/g 的比容量,和正極材料
    磷酸鐵鋰組成全電池的實際應用在 0.1 C 下充放電 100 圈有 40.6 mAh/g 的可逆
    比容量且庫倫效率高達 95.7 %。
    第二部分以第一部分的有機配位基為基礎,金屬離子前驅物使用硝酸銅和
    硝酸鎳合成有機金屬骨架前驅物 Cu/NiBTC,經過 500 ℃鍛燒硫化後得到硫化銅
    硫化鎳複合材,不同鎳加量的複合材作為鋰離子電池負極材料進行循環穩定性
    測試可以發現複合材有鎳的情況下,相比於硫化銅複合材,雙金屬的複合材的比
    容量、維持率和鋰離子擴散係數會提升,在半電池充放電測試中 Cu1.96S/Ni3S2-50
    具有最好的循環穩定性,電流密度 1 A/g 下循環 250 圈有 167 mAh/g 的比容量,
    而 0.1 A/g 下循環 100 圈有 385.5 mAh/g 的比容量。;Metal organic framework (MOFs) have been considered to be the ideal
    precursor for metal oxides, metal sulfides, metal selenides or carbon materials which
    can be used for anode of lithium and sodium ion batteries. In this work, use the metal
    organic framework based on manganese ion, and get manganese sulfide MnS by
    sulfurization, the best sulfurization temperature is 700 ℃. After finding the best
    sulfurization temperatue, then synthesis manganese and zinc bimetallic metal organic
    framework Mn/ZnBTC be the precursor and get the manganese and zinc sulfides
    decorated with nitrogen-doped carbon by sulfurization named (Mn,Zn)S/N-C. Then
    find the ratio of manganese and zinc which has the best electrochemical performance
    for anode material. Finally, (Mn,Zn)S/N-C(1-1) exhibits the most great
    electrochemical performance in half-cell lithium ion batteries, it shows specific
    capacity of 1003 mAh/g after 100 cycles at a current density 0.1 A/g. And in half-cell
    sodium ion battery, it demonstrates a specific capacitance of 266.8 mAh/g after 100
    cycles at a current density of 0.05 A/g. In a full-cell configuration with lithium iron
    phosphate, it exhibits a reversible capacity of 40.5 mAh/g and a coulombic efficiency
    of approximately 95% after 100 cycles at 0.1 C.
    The second part is based on the same ligand from the first part. Copper nitrate
    and nickel nitrate are used as metal ion precursors to replace the manganese and zinc
    ions and synthesize organic metal framework precursors Cu/NiBTC. After
    sulfurization, copper sulfide and nickel sulfide composite materials are obtained. Then
    test the relation of electrochemical performance and nickel amount. It is observed that
    composites with nickel content, specific capacity of those composites can higher than
    copper sulfide. Among them, Cu1.96S/Ni3S2-50 exhibits the best cyclic stability, with a
    specific capacity of 385.5 mAh/g after 100 cycles at a current density 0.1 A/g. And
    also exhibits the highest lithium ion diffusion coefficient.
    顯示於類別:[化學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML10檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明