中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92758
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41641822      Online Users : 1487
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/92758


    Title: Online Change Point detection under a Copula-Based Markov Chain Model for Bimodal Time Series
    Authors: 劉彥劭;Liou, Yan-Shao
    Contributors: 統計研究所
    Keywords: 在線改變點檢測;Clayton copula;馬可夫模型;貝氏推論;ICO boom;online change point detection;Clayton copula;Markov model;Bayesian inference;ICO boom
    Date: 2023-07-08
    Issue Date: 2024-09-19 16:17:14 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文提出了貝氏在線變點檢測方法基於Clayton copula 且邊際分布為混合
    常態分布的copula-Markov 模型。在模擬研究中,我們研究了相關時間序列數據
    的結構變化,包括單峰數據和雙峰數據之間的轉換以及雙峰數據內部的結構變
    化,並將其與邊際分布為常態分布的copula-Markov 模型進行比較,模擬的結果
    指出在相關性資料由單峰改變成雙峰時,我們所使用的模型在準確率、平均絕對
    誤差、真陽個數、偽陽個數皆勝過對比模型。我們應用這種方法來檢測加密貨幣
    市場從2017 年到2018 年初的變點,其中包括ICO 繁榮的開始和結束,我們選用
    BTC、ETH、NEO 的每日報酬率進行偵測。結果顯示了我們的方法在檢測相關時
    間序列數據的變化方面的有效性,並提供了關於虛擬貨幣市場在這ICO 繁榮-蕭條
    期間行為的見解。
    關鍵字:在線改變點檢測,Clayton copula,馬可夫模型,貝氏推論,ICO boom;In this paper, we propose an online Bayesian changepoint detection approach for dependent
    time series data under the copula-based Markov model with the marginal distributions
    being mixture normal distributions. Simulation studies examine structural changes in
    sequential time series data with dependency, including transformation between unimodal
    and bimodal data and structural changes within bimodal data. For comparison, we consider
    the Clayton copula-based Markov model with normal marginal distributions as the
    benchmark model. The results show that the proposed model outperforms the benchmark
    model in detecting change when the correlation structure of the changes from unimodal
    data to bimodal data. In the empirical analysis, we use the daily returns of BTC, ETH, and
    NEO to identify change points in the cryptocurrency market from 2017 to early 2018. The
    results demonstrate the effectiveness of our approach in detecting changes and providing
    insight into cryptocurrency market behavior during ICO booms and busts.
    Keywords: online change point detection, Clayton copula, Markov model, Bayesian
    inference, ICO boom
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML19View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明