English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41625438      Online Users : 1953
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/92824


    Title: 基於Q-learning與非監督式學習之交易策略;A Trading Strategy Based on Q-learning and Unsupervised Learning
    Authors: 李濬紘;Lee, Chun-Hung
    Contributors: 統計研究所
    Keywords: 動態時間校正;非監督式學習;投資組合選擇;Q-learning;t-SNE
    Date: 2023-07-26
    Issue Date: 2024-09-19 16:21:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在股票交易中,根據不同情況設計一個盈利的交易策略是一個重大挑戰。近年來,人工智能的發展為股票市場帶來了新的投資方法。Q-learning,一種強化學習演算法,可以幫助投資者學習市場趨勢並提供更合理的投資決策。在Q-learning中,狀態的制定尤其重要,因為不同的制定方法會影響其表現。本文提出了一種基於非監督式學習的數據驅動方法來設置Q-learning所需的狀態,將多維度的股票市場資料作為特徵,並藉由動態時間校正(DTW) 與 t-SNE 來找尋所需狀態。本文以台灣股市為例,建構單一資產的Q-learning投資決策,並相應地提出了一個由多個資產組成的適當投資組合。實證結果顯示,所提出的方法提供了不錯的投資表現。;Designing a profitable trading strategy based on different situations is a major challenge in
    stock trading. In recent years, the development of artificial intelligence has brought new in vestment methods to the stock market. Q-learning, a reinforcement learning algorithm, can
    help investors to learn market trends and recommend more reasonable investment decisions.
    In Q-learning, the formulation of states is particularly important since different formula tion methods can affect its performance. We propose a data-driven approach based on a
    non-supervised learning method to set the states required in Q-learning. By utilizing multi dimensional stock market data as features and leveraging Dynamic Time Warping (DTW) and t-SNE, the proposed approach efficiently identifies the desired states for Q-learning. In this work, using the Taiwan stock market as an example, we obtain the Q-learning invest ment decision of a single asset and propose an appropriate investment portfolio consisting of multiple assets accordingly. The empirical results reveal that the proposed method provides a satisfactory investment performance.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML9View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明