English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41619990      線上人數 : 3022
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/92997


    題名: 運用機器學習方法預測股價報酬
    作者: 郭家瑞;Guo, Jia-Ruei
    貢獻者: 經濟學系
    關鍵詞: 臺灣股價報酬預測;Fama-French三因子模型;Clark-West 統計檢定;機器學習模型;Taiwan stock return prediction;Fama-French three-factor model;Clark-West statistic test;machine learning models
    日期: 2024-02-20
    上傳時間: 2024-09-19 16:37:57 (UTC+8)
    出版者: 國立中央大學
    摘要: 股票報酬預測在經濟與財金領域是一個相當重要的議題,本文研究目的為運用25個美國與臺灣財金經濟預測因子,採用七種不同機器學習模型預測已除權除息之臺灣加權股價指數報酬,並運用樣本外R ²值與Clark-West統計量檢定模型之顯著性,繪出模型預測臺灣股市報酬線圖,並觀察模型所預測之股市報酬與實際股市報酬間的差異性,找尋適合預測臺灣股價報酬之機器學習模型。
    本文首先採用Fama-French三因子模型為基礎,運用t統計量方式,初步選出適合之預測因子個數,接著,使用彈性網絡法選擇重要預測因子。接下來,運用Dong et al. (2022) 所定義之平均預測報酬指標,計算並繪出不同期間之平均預測報酬指標,初步觀察顯示,當期間愈長,其平均預測報酬指標呈現愈平滑的趨勢;接著,使用七種不同機器學習模型計算預測臺灣加權指數股價報酬,實證結果得出在Clark-West 檢定顯著之模型中,平均預測法為本文之最佳機器學習模型,而除了Clark-West 檢定顯著模型之外,在R ²值大於零之模型方面,簡單組合法為本文之較佳機器學習模型。
    ;Predicting stock returns is a significant issue in the field of economics and finance. The purpose of this study is to utilize 25 financial and economic forecasting factors from the United States and Taiwan and employ seven different machine learning models to predict the returns of the Taiwan Weighted Stock Index after adjusting for dividends and stock splits. The out-of-sample R ² value and Clark-West statistic are used to assess the significance of the models. The study then presents a graphical representation of the predicted stock market returns based on the models and observes the differences between the predicted returns and actual stock market returns, aiming to identify a suitable machine learning model for predicting Taiwan stock price returns.
    In this paper, the Fama-French three-factor model is initially used, employing t-statistics to select the appropriate number of predictive factors. Subsequently, the elastic net method is applied to select the important predictive factors. Next, the average forecast return indicator defined by Dong et al. (2022) is calculated and plotted for different periods. Preliminary observations show that the average forecast return indicator becomes smoother as the period lengthens. Seven different machine learning models are then used to compute the predicted returns of the Taiwan Weighted Stock Index. The empirical results indicate that the average forecast method is the best machine learning model in terms of significant results from the Clark-West test. However, among the models with R ² values greater than zero but not significant according to the Clark-West test, the simple combination method is a better machine learning model in this study.
    顯示於類別:[經濟研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML12檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明