中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93018
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142977      Online Users : 1320
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93018


    Title: Image Anomaly Detection by GAN Inversion
    Authors: 胡琦;Hu, Chi
    Contributors: 資訊工程學系在職專班
    Keywords: 異常偵測;生成對抗網路;生成對抗網路逆映射;Anomaly Detection;Generative Adversarial Network;GAN Inversion
    Date: 2023-07-14
    Issue Date: 2024-09-19 16:38:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 異常檢測在資料分析領域中起著基石般的作用,對於金融欺詐檢測、醫療診斷、工業缺陷偵測,以及網絡安全等眾多領域具有至關重要的影響。隨著資料規模與複雜性的增加,能有效偵測異常資料的方法變得越來越重要且具有挑戰性。在本研究中,我們提出了利用生成對抗網路(GAN)與編碼器(encoder)的架構來進行異常圖片的偵測,並僅以正常資料作為訓練資料,利用重建誤差(reconstuction error)來進行異常偵測。結果中顯示,我們提出的方法在使用生成對抗網路架構進行異常偵測的偵測能力上,相較於目前領域中最先進的模型仍有更佳的表現。;Anomaly detection is one of the fundamental elements in data analysis, which is crucially influencing various industrial sectors. With the increasing volumes and complexity of the data, finding efficient anomaly detection methods has become increasingly important and challenging. However, the scarcity of anomaly data makes the training of anomaly detection models extremely difficult. To address this issue, this study proposes a method to identify anomalous images utilizing a generative adversarial network (GAN) combined with an encoder structure, leveraging only normal data for training and employing reconstruction error for anomaly detection. The experimental results indicate that our proposed method outperforms the state-of-the-art in anomaly detection using the GAN architecture. Furthermore, we identify an interesting relationship between the problems of anomaly detection and one-class novelty detection.
    Appears in Collections:[Executive Master of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML19View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明