English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41645009      線上人數 : 1205
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93039


    題名: 基於機器學習及掃毒檢測的惡意程式封鎖機制;An Automatic Malware Blocking Mechanism Based on Machine Learning and Anti-Virus
    作者: 張佑菖;Chang, Charles Yuchang
    貢獻者: 資訊工程學系在職專班
    關鍵詞: 惡意程式封鎖機制;機器學習;掃毒檢測;Malware Blocking Mechanism;Machine Learning;Anti-Virus
    日期: 2023-07-20
    上傳時間: 2024-09-19 16:39:11 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究透過機器學習技術結合掃毒檢測,設計出⼀機制能夠有效檢測使用者於HTTPS網站下載的惡意程式並阻擋於外部。本機制所設計的架構可彈性調整部署位置,將惡意程式於外部網路或是隔離區進⾏掃描。本機制之惡意程式檢測⽅法有⼆,MLC 模組可攔截約77%惡意程式,AVS 模組可達100%。另外檢測紅隊各滲透階段常用⼯具,皆能成功攔截。;In this study, a mechanism is designed to effectively detect malware downloaded from HTTPS websites and block them from outside the network by combining machine learning technology with anti-virus detection. The architecture of this mechanism can be flexibly deployed to scan malware in external network or quarantine area. There are two ways to detect malware in this mechanism, the MLC module can block about 77% of malware and the AVS module can reach 100%. In addition, the Red Team′s common tools for each infiltration stage can be successfully blocked.
    顯示於類別:[資訊工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML8檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明