中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93288
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41641660      Online Users : 1492
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93288


    Title: 用於注意力不足過動症診斷的可解釋多模態融合模型;ADHD Diagnosis Using Explainable Multimodal Fusion Model
    Authors: 蔡和蓉;Tsai, Ho-Jung
    Contributors: 資訊工程學系
    Keywords: 注意力不足過動症;可解釋人工智慧;多模態融合;神經行為資料;虛擬實境;Attention Deficit/Hyperactivity Disorder (ADHD);Explainable Artificial Intelligence (XAI);multimodal fusion;neurobehavioral data;Virtual Reality (VR)
    Date: 2023-07-26
    Issue Date: 2024-09-19 16:52:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 深度學習已經被證明能夠準確地診斷注意力不足過動症(ADHD),但是深度學習一直因為其黑盒子般的不可解釋性而不被信任。幸運的是,隨著可解釋人工智慧的蓬勃發展,這個問題有了解決方案。本研究採用了基於虛擬現實的GO/NOGO 任務,並在其中加入了干擾。在任務期間,會蒐集受測者的眼球追蹤、頭部移動、以及腦電資料。這些資料會被用來訓練一個可解釋多模態融合模型,這個模型除了可以分類患有ADHD的孩童以及正常孩童,也可以產出具有解釋性的熱圖。這個熱圖能夠顯示在腦電資料中特定變量和時間戳的重要性,從而幫助我們分析由模型獲取的型態。從我們對於熱圖的觀察可以發現,模型標示出了常用於分析事件相關電位成分的時間區段。熱圖也表現出干擾對於GO事件和NOGO事件以及ADHD孩童和正常孩童之間的影響是不同的。;Deep learning has been proved to diagnose Attention Deficit/Hyperactivity Disorder (ADHD) accurately, but it has raised concerns about trustworthiness because of the lack of explainability. Fortunately, the development of explainable artificial intelligence (XAI) offers a solution to this problem. In this study, we employed a VR-based GO/NOGO task with distractions, capturing participants′ eye movement, head movement, and electroencephalography (EEG) data. We used the collected data to train an explainable multimodal fusion model. Besides classifying between ADHD and normal children, the proposed model also generates explanation heatmaps. The heatmaps provide the importance of specific variables and timestamps in the EEG data to help us analyze the patterns captured by the model. According to our observations, the model identified specific time intervals that related to specific event-related potentials (ERPs) components. The heatmaps also demonstrate that the impacts of distractions vary between not only the GO and NOGO events but also ADHD and normal children.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML11View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明