English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625242      線上人數 : 1917
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93306


    題名: 基於深度學習的虛擬現實腦震盪檢測與融合方法;Deep-Learning-based Virtual Reality Concussion Detection with Fusion Method
    作者: 謝兆峰;Hsieh, Chao-Feng
    貢獻者: 資訊工程學系
    關鍵詞: 腦震盪;機器學習;融合方法;虛擬現實;輕度創傷性腦損傷;穩態視覺誘發電位;眼動追蹤;Concussion;Machine Learning;Fusion strategy;Virtual Reality;Mild Traumatic Brain Injury(mTBI);SSVEP;Eye Tracking
    日期: 2023-07-26
    上傳時間: 2024-09-19 16:53:14 (UTC+8)
    出版者: 國立中央大學
    摘要: 在職業球賽中,碰撞和衝突是不可避免的,這很容易導致創傷性腦損
    傷,甚至危及生命。這些腦震盪症狀可能會嚴重影響運動員的職業生涯
    和發展,而後遺症可能導致永久性損傷。因此,一種即時且有效的測試
    或檢測方法是必要的工具。過去大多數的測試方法相對主觀,通常需要
    運動員自行報告,這可能易於操縱。過去可以使用視覺誘發電位(VEP)
    測試人腦的視覺功能,但需要一個安靜和無干擾的環境來收集數據。腦
    震盪患者通常在某些腦部區域有頭部受傷。隨著虛擬現實(VR)和機器
    學習(ML)的快速發展,我們利用VR 頭戴式設備創造出一個沉浸式環
    境,這個環境可以創造一個無干擾的封閉環境,以更可靠地從患者收集
    數據。多模態融合方法可以檢測腦震盪症狀並對應不同的神經功能進行
    全面評估,使用腦電圖(EEG)和眼動追蹤傳感器。最近,機器學習和
    深度學習方法在發現腦震盪症狀方面應用較少,因此我們進一步研究這
    些先進技術。我們提出了一種新穎的腦震盪檢測系統,結果在我們的模
    擬數據集中實現了0.95 的準確率。;In professional ball games, collisions and conflicts are inevitable, which
    can easily cause traumatic brain injuries and even life-threatening injuries.
    These concussion symptoms can seriously impact a player’s career and
    development, and the sequelae can cause permanent damage. Therefore,
    an immediate and effective testing or detection method is a necessary tool.
    Most of the testing methods in the past were relatively subjective, and they
    usually need a self-report for players themselves, which may cause easily
    be manipulated. In the past, a visual evoked potential (VEP) can be used
    to test the visual function of the human brain but needed a silent and
    interference-free environment to collect data. Concussion patients often
    have head injuries in some brain sections. With the rapid development of
    Virtual Reality (VR) and Machine Learning (ML), we utilize a VR headset
    to create an immersive environment that creates an enclosed environment
    that is interference-free in order to collect data more reliably from patients.
    Multi-modal fusion methods can detect concussion symptoms and make a
    comprehensive assessment for different brain sections corresponding with
    different neurological functions with EEG and eye-tracking sensors. Recently,
    ML and DL methods are less applied to find concussion symptoms,
    then we further investigate these with advanced techniques. We propose a novel concussion detection system and the result can achieve an accuracy
    of 0.95 in our simulation dataset.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML19檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明