English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625456      線上人數 : 1971
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93329


    題名: 使用權重組合模型預測雲林縣地層下陷;Using Ensemble Model Predict The Land Subsidence in Yunlin County
    作者: 唐子傑;Tang, Zi-Jie
    貢獻者: 資訊工程學系
    關鍵詞: 地層下陷預測;雲林縣濁水溪沖積扇;克利金插值法;機器學習;深度學習;長短期記憶模型;組合權重模型;Land subsidence prediction;Alluvial fan of Zhuoshuixi, Yunlin County;Kriging Interpolation;Machine learning;Deep learnging;Long Short -Term Memory;Ensemble model
    日期: 2023-07-27
    上傳時間: 2024-09-19 16:53:55 (UTC+8)
    出版者: 國立中央大學
    摘要: 地層下陷是一種不可逆的地理現象,世界各地發生的地層下陷已經嚴重影響了人身安全,而台灣也不例外,所以預測地層下陷並做到提前防治下陷成為目前重要的議題。在早期台灣地層下陷預測較著重在數值研究模擬,相較於數值模擬,人工智慧方法不需提供推估的水文參數和抽水量資料,可以直接透過給定的資料集進行建模,而其他應用人工智慧方式預測的研究也礙於紀錄資料不夠充足無法做到有效的預測,隨著紀錄資料越來越豐富和人工智慧技術越發進步,在此議題上更能夠取得不錯的效果。本研究使用克利金插值法(Kriging Interpolation)對 Global Navigation Satellite System(GNSS)自動固定站資料建立雲林縣全域的資料集和以測站為單位的資料集,分別測試雲林縣全域地層下陷敏感性模型對地層下陷的描述能力和預測數座需要特別關注的 GNSS 測站未來數周地層下陷量以每彌補測站測量資料時所需的時間延遲。在使用了七種特徵建立模型 – 地下水水位、濕度、氣溫、降雨量、日照時數、土地利用、地質組成,在雲林縣全域地層下陷敏感性測試中已經可建立有效描述真實下陷量的模型,指標中 R2
    (決定系數 R 平方, Coefficient of Determination) – 0.954、Cor
    (決定系數 R 平方,Pearson Correlation Coefficient) – 0.979、MSE( 平均平方誤差, Mean Square Error) – 2.20E-05(單位:平方公尺);特定 GNSS 測站預測中,使用 8 周訓練資
    料建立預測未來8周的地層下陷模型有最穩定的預測結果,組合模型中的 R2– 0.221 、Cor – 0.519、RMSE(平均平方根誤差, Root Mean Square Error) – 0.00207(單位:公尺)。;Land subsidence is an irreversible geological phenomenon that has had a significant
    impact on human safety around the world, and Taiwan is no exception. Therefore,
    predicting land subsidence and implementing early prevention measures have become
    important issues. In the early stages, land subsidence prediction in Taiwan focused
    mainly on numerical research and simulations. Compared to numerical simulations,
    artificial intelligence methods do not require estimated hydrological parameters and
    pumping data. They can directly model the given dataset. However, other studies that
    apply artificial intelligence methods for prediction have been hindered by insufficient
    recorded data, making it challenging to achieve effective predictions. With the
    increasing availability of recorded data and advancements in artificial intelligence
    technology, more promising results can be achieved in this field. This study utilized
    the Kriging interpolation to establish a dataset for the entire Yunlin County using
    Global Navigation Satellite System (GNSS) automatic reference station data, as well
    as station-based datasets. This study utilized the Kriging method to establish a dataset
    for the entire Yunlin County using Global Navigation Satellite System (GNSS)
    automatic reference station data, as well as station-based datasets. By using seven
    features, including groundwater level, humidity, temperature, rainfall, sunshine hours,
    land use, and geological composition, the model was able to effectively describe the
    real subsidence levels in the Yunlin County-wide land subsidence sensitivity test. The
    evaluation indicators were as follows: R
    2
    (Coefficient of Determination) – 0.954, Cor
    (Pearson Correlation Coefficient) – 0.979, MSE (Mean Square Error) – 2.20E-05 (unit:
    square meter). Regarding the prediction of specific GNSS stations, the model showed
    the most stable results when using an 8-week training dataset to predict subsidence for
    the next 8 weeks. The combined model yielded the following results: R2 – 0.221, Cor– 0.519, and RMSE (Root Mean Square Error) – 0.00207(unit: meter).
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML8檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明