中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93480
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642935      Online Users : 1369
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93480


    Title: Evasion and Pursuit Games via Adaptive Submodularity
    Authors: 趙訢;Chao, Hsin
    Contributors: 數學系
    Keywords: 次模性;追趕問題;多機器人合作;機率搜尋;Submodularity;Pursuit-evasion games;Multi-robot cooperation;Probability search
    Date: 2023-01-16
    Issue Date: 2024-09-19 17:08:02 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 這篇論文專注於多機器人追逐單一目標的追趕問題。在已知的地
    圖上, 目標為最大化目標物的偵測機率。此研究提出以聚類演算法與
    貪婪演算法來解決這個問題, 在目標函數為次模函數的情況下, 貪
    婪演算法帶有理論保證值。模擬證實了提出的演算法比起另一個演算
    法更好。;This research focuses on pursuit-evasion(PE) games with multi-pursuer and an evader. Given the map, the objective function is to maximize the probability of the evader detection. The proposed algorithms compute search path of pursuers via cluster algorithm and greedy algorithms. Since the objective function is submodular, the algorithms have theoretical guarantees. The simulations demonstrate that the proposed method outperforms benchmark approaches.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML23View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明