English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43368507      線上人數 : 1291
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93561


    題名: 對於NBA主力球員未來表現效率的公式創造與研究
    作者: 周凱緯;Chou, Kai-Wei
    貢獻者: 數學系
    關鍵詞: 美國職業籃球聯賽;機器學習;K-平均演算法;特徵工程;多項式迴歸;NBA;Machine Learning;K-means Clustering;Feature Engineering;Polynomial Regression
    日期: 2023-07-24
    上傳時間: 2024-09-19 17:14:13 (UTC+8)
    出版者: 國立中央大學
    摘要: 本篇論文靈感來自於美國職棒大聯盟(MLB)近期多人注目的賽伯計量學(Sabermetrics),賽伯計量學對各項傳統的基礎數據做分析,組合出多項由基礎數據組合而來的進階數據。因此,本篇論文主要是希望能夠設計出一套使用基礎數據來評估美國職業籃球聯賽(NBA)球隊中主力球員未來表現效率的公式。研究中所蒐集的資料來源於NBA官網和網站 Basketball-Reference 。
    本次研究先將所有資料分群後透過大量數據觀察,根據分群結果挑選出主力球員,接著我們針對主力球員資料來做預測。過程中使用了多個不同的特徵工程手法,當中包括一個自行設計的特徵工程手法,效果也較其他手法佳。最後也放上了表格做比較,該表格顯示使用更多的模型搭配剛才使用過的特徵工程方法來做預測的訓練集和測試集分數,並且比較各模型與各個特徵工程手法之間的結果。;This paper is inspired by sabermetrics in Major League Baseball (MLB) in the United States. Sabermetrics involves analyzing various traditional basic data and combining them to create advanced metrics. Therefore, the main goal of this paper is to design a formula that uses basic data to evaluate the future performance efficiency of key players in the National Basketball Association (NBA). The data for this research was collected from the NBA official website and the Basketball-Reference website.
    In this study, we do clustering to all the data, and through extensive data observation, key players were selected based on the clustering results. Subsequently, we focused on predicting the performance of these key players using their data. Various feature engineering techniques were employed in the process, including a self-designed method, which yielded better results compared to other techniques. Finally, a comparison table was provided, showing the scores of the training and testing sets when using multiple models in conjunction with the feature engineering methods used earlier. The table also compares the results between different models and feature engineering techniques.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML29檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明