中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93601
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41638545      Online Users : 1746
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93601


    Title: 特定四維常態分布之參數估計式的漸近常態性及漸近有效性
    Authors: 梁佑任;Liang, You-Ren
    Contributors: 數學系
    Keywords: 特定四維常態分布;漸近常態性;漸近有效性;參數估計式
    Date: 2024-01-10
    Issue Date: 2024-09-19 17:21:02 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 陳聖元(2022) 將二維常態分布N(μ_1, μ_2, σ^2, σ^2, ρ) 推廣至4 參數之2p 維常態分布並推得4 參數之最大概似估計式. 林家瑋(2023) 將二維常態分布N(μ_1, μ_2, σ^2_1, σ^2_2, ρ)推廣至5參數之2p 維常態分布並推得5 參數之漸近概似估計式. 當p = 2 時, 本文推得上述估計式之漸近常態性並據以討論漸近有效性.;Chen(2022) generalized the bivariate normal distribution N(μ_1, μ_2, σ^2, σ^2, ρ) to a 2p dimensional normal distribution and presented the maximum likelihood estimators of the parameters μ1, μ2, σ2 and ρ.Lin(2023) generalized the bivariate normal distribution
    N(μ_1, μ_2, σ^2_1, σ^2_2, ρ) to a 2p dimensional normal distribution and presented the asymototic
    likelihood equation estimators of μ_1, μ_2, σ^2_1, σ^2_2 and ρ.The purpose of this paper is to discuss the asymototic normality and asymototic efficiency of the estimators mentioned above for p = 2.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML29View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明