本研究建立以碳氫燃料為燃料之質子陶瓷燃料電池(Protonic ceramic fuel cell)與質子交換膜燃料電池(Protonic Exchange Membrane fuel cell)之複合動力系統(PCFC-PEMFC hybrid system)。根據電化學理論利用MATLAB計算PCFC及PEMFC之性能曲線,並將電化學模型鑲嵌於商用軟體Thermolib中進行系統模擬。其中PEMFC之性能曲線為根據本實驗室所製作之PEMFC百瓦電堆之實驗數據進行模型結果與實驗量測相互驗證。 在本研究中,建立了三種不同燃料電池複合系統,其中,系統一為燃料使用甲醇之燃料電池複合系統,系統二為燃料使用乙醇之燃料電池複合系統,系統三為燃料使用丙烷之燃料電池複合系統,各系統之系統配置有些需不同,透過在不同操作條件下進行比較,並從中分析系統之相關熱力特性對系統能耗與性能之影響。 研究結果表明,使用乙醇之燃料電池複合系統具有最佳之系統效率,其可用能效率亦為三系統中之最高。此外,從不同操作條件下之分析可得知,若是提升PCFC的燃料使用率,系統整體效率最高可以提高20%,若是,提升PEMFC的燃料使用率,系統整體效率最高可以提高5%。;In this study, a hybrid power system consisting of a Protonic Ceramic Fuel Cell (PCFC) and a Proton Exchange Membrane Fuel Cell (PEMFC) was established, fueled by hydrocarbon fuels. The performance curves of the PCFC and PEMFC were calculated using electrochemical theory in MATLAB, and the electrochemical models were embedded in the commercial software Thermolib for system simulation. The performance curve of the PEMFC was validated by comparing the model results with experimental data obtained from our laboratory′s PEMFC stack. Three different fuel cell hybrid systems were developed in this study. System 1 utilized methanol as the fuel, System 2 utilized ethanol, and System 3 utilized propane. Each system had different configurations, and comparisons were made under various operating conditions to analyze the influence of thermodynamic characteristics on system energy consumption and performance. The results demonstrated that the ethanol-based fuel cell hybrid system achieved the highest system efficiency and exergy efficiency among the three systems. Furthermore, the analysis of different operating conditions revealed that increasing the fuel utilization rate of the PCFC could improve the overall system efficiency by up to 20%, while increasing the fuel utilization rate of the PEMFC could improve the overall system efficiency by up to 5%.