English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47283943 線上人數 : 422
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
資訊電機學院
電機工程研究所
--博碩士論文
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
資訊電機學院
>
電機工程研究所
>
博碩士論文
>
Item 987654321/9380
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/9380
題名:
進化演算法結合多層感知機架構運用在4-QAM決策迴授等化器上
;
4-QAM Decision feedback equalization using Evoluation based multi-layer perceptron structures.
作者:
黃俊威
;
Chun-Wei Huang
貢獻者:
電機工程研究所
關鍵詞:
進化演算法
;
Evolutionary Algorithms
日期:
2002-06-19
上傳時間:
2009-09-22 11:46:34 (UTC+8)
出版者:
國立中央大學圖書館
摘要:
通訊系統在傳送過程中,信號會受到頻寬的限制與雜訊的干擾,而產生失真現象。為了減少信號在有限頻寬通道中,受到雜訊與碼際干擾(Intersymbol Interference,ISI)效應的影響,本論文提出一種適用於進化演算法的應用,將進化演算法結合多層感知機架構,運用在4-QAM(Quadrature amplitude modulated)決策迴授等化器(DFE)上來消除雜訊與碼際干擾。 由於多層感知機(Multi-layer perceptron,MLP)其架構具有非線性之特性,可以設計成為良好的通道等化器。但是多層感知機的誤差曲面包含了釵h零梯度點,所以使用複數倒傳遞演算法(Complex backpropagation algorithm,CBP)來訓練多層感知機,常會面臨到陷入局部最小值(Local minimum),而導致無法將多層感知機訓練到最佳。 進化演算法(Evolutionary algorithms,EAs)為一種非梯度坡降學習演算法(non-gradient decent learning algorithm),其根據達爾文『適者生存』的法則,來獲得最佳化的解。我們利用進化演算法具有非梯度坡降搜尋與多點搜尋的技巧,來避免因為初始值位址不佳而無法獲得全域最小值(Global minimum)。 結果顯示,利用進化演算法運算所得到的誤碼率(bit error rate, BER)表現,比用複數倒傳遞演算法還要好,亦比使用傳統最小均方誤差(Least mean-square)決策迴授等化器有更好的效能。
顯示於類別:
[電機工程研究所] 博碩士論文
文件中的檔案:
檔案
大小
格式
瀏覽次數
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明