English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42773581 線上人數 : 1192
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
搜尋範圍
全部NCUIR
管理學院
資訊管理學系
--研究計畫
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於NCUIR
‧
管理
NCU Institutional Repository
>
管理學院
>
資訊管理學系
>
研究計畫
>
Item 987654321/94246
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
資料載入中.....
資料載入中.....
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/94246
題名:
基於穩健雲端系統之行動應用安全性提升研究-子計畫二:利用圖結構特徵工程微調Code LLaMA以建立Android惡意程式原始碼檢測系統
;
Fine-Tuning Code Llama with Graph-Structured Feature Engineering for the Development of an Android Malware Source Code Detection System
作者:
陳奕明
;
梁德容
;
王尉任
貢獻者:
國立中央大學資訊管理學系
關鍵詞:
大型語言模型
;
原始碼
;
圖神經網路
;
混淆攻擊
;
Android惡意程式偵測
;
Large Language Model
;
Source Code
;
Graph Neural Network
;
Obfuscation Attack
;
Android Malware Detection
日期:
2024-09-27
上傳時間:
2024-09-30 17:21:20 (UTC+8)
出版者:
國家科學及技術委員會(本會)
摘要:
隨著生成式AI的快速發展,利用LLMs來生成加密惡意程式已成為潛在的重大威脅,本計畫發展一個APP能夠偵測Android惡意程式,此APP以Code LLaMA作為基石模型並進行微調,使得我們的模型能夠學習惡意原始碼的結構及語義特徵,不受混淆和加密的影響,具有更好的模型穩健性(Robustness)和泛化能力。 社會面:讓使用者擁有更方便、快速的方法可以了解所使用的APP是否有危害。 經濟面:防護混淆與零時差攻擊可減少民眾被攻擊時造成的經濟損失。 學術面:現今已有許多針對Android的惡意程式檢測,但據我們所知,目前尚無研究探討利用大型語言模型與原始碼來解決Android惡意程式帶來的問題。
關聯:
財團法人國家實驗研究院科技政策研究與資訊中心
顯示於類別:
[資訊管理學系] 研究計畫
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
49
檢視/開啟
在NCUIR中所有的資料項目都受到原著作權保護.
社群 sharing
::: Copyright National Central University. | 國立中央大學圖書館版權所有 |
收藏本站
|
設為首頁
| 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
隱私權政策聲明