English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81025/81025 (100%)
造訪人次 : 46031248      線上人數 : 587
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/9430


    題名: 高性能並聯式主動電力濾波器系統設計與實現;Design and Implementation of High Performance Shunt Active Power Filter Systems
    作者: 楊銘基;Ming-Ji Yang
    貢獻者: 電機工程研究所
    關鍵詞: 電流諧波;功率因數;參考模型適應控制;T-S模糊控制;主動式電力濾波器;Active power filter;T-S fuzzy control;model reference adaptive control;power factor;current harmonic.
    日期: 2009-06-27
    上傳時間: 2009-09-22 11:47:35 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本論文主要目的為設計與實現具有高性能的並聯式主動電力濾波器系統。過去並聯式主動濾波器常用的控制器為比例-積分(PI)控制器,而當PI控制器的參數面臨不同負載變化時,其控制器參數可能必須經過重新調整。有鑑於此,本論文針對單相並聯式主動電力濾波器提出兩種具有強健性及適應性的控制器,來改善市電功率因數及緩解電流諧波污染等問題。本論文所提出來的電力濾波器系統,分別包含了Takagi-Sugeno (T-S) 模糊控制及參考模型適應控制器(MRAC)的控制演算法。然而,此並聯式主動電力濾波器的數學模型為一個雙線性系統,不易設計其控制器及分析穩定度。因此,本論文先利用一般線性化的方法,來近似系統的非線性特性,並同時解決穩定度的問題。 本論文T-S模糊控制器的設計上,是基於平行分佈補償器(PDC)的設計方法,其中穩定的控制器回授增益值與共同之正定矩陣,則是以李亞普諾夫(Lyapunov)穩定理論為基礎,最後藉由MATLAB應用軟體的線性矩陣不等式(LMI)求解,以確保每個子系統均能滿足李亞普諾夫不等式。而在本論文參考模型適應控制器的設計上,是根據李亞普諾夫穩定理論與Barbalat定理設計出一適應控制律,而系統輸出根據此律與參考模型參數進行追蹤比較,最後保證系統能漸進穩定。與傳統比例-積分控制器相比,本論文所提的T-S模糊及適應控制器應用,具有較高的設計彈性、強健性與適應性,可因應系統不同負載的劇烈變化,同時保持一致的輸出性能。 為了證明所提出的控制方法之可行性,除了運用數位訊號微處理器(dsPIC30F4012)來實現複雜的控制法則運算外,也建構實現一1kVA的測試原型機,來實際測試系統的性能。最後經模擬與實驗結果驗證本系統可提高功率因數、降低電流諧波及暫態響應的強健性。 The main objective of this dissertation is to design and implement high performance shunt active power filter (APF) systems. In the past, most shunt active power filters used proportional integral (PI) controller. However, it may be necessary to retune the PI parameters for different operation conditions. Therefore, this dissertation proposes two kinds of controllers, which are robust and adaptive, for a single-phase shunt APF to improve line power factor (PF) and mitigate line current harmonics. The APF systems respectively include a Takagi-Sugeno (T-S) fuzzy and model reference adaptive controllers (MRAC). Because APF is a bilinear system, it is not easy to design the controller. Hence, this dissertation firstly employs the linearization method to approach the nonlinearity of the system and solve the stability problem. In the T-S fuzzy controller design, the parallel distributed compensation (PDC) is employed with the T-S models. To find stable feedback gains and a common positive-definite matrix for the designed fuzzy control system, it is based on Lyapunov’s stability theory and solved via MATLAB’s linear matrix inequality (LMI) tool. In the MRAC design, Lyapunov’s stability theory and Barbalat’s Lemma are used to design an adaptive law which guarantees asymptotic output tracking for the system. While compared with the conventional proportional-integral (PI) control, the advantages of the T-S fuzzy and MRAC are more flexible, adaptive and robust. Moreover, MRAC can self-tune the controller gains to assure the system stability. To verify the proposed systems, a digital signal microcontroller (dsPIC30F4012) is utilized to implement the control algorithms. And an 1-kVA laboratory prototype of the active power filter is built to test the feasibility. Both simulation and experimental results are provided to verify the effectiveness of the proposed active power filter systems which increase the power factor, reduce the current harmonics and enhance the robustness of the transient response.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明