中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94404
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 44004603      在线人数 : 696
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94404


    题名: TinyissimoYOLOv5-P4-DA:基於深度剪枝、輔助網路和量化的物件偵測模型;TinyissimoYOLOv5-P4-DA: A Depth Pruning, Auxiliary Network, and Quantization-Based Object Detection Model
    作者: 邱之宇;Chiou, Jr-Yu
    贡献者: 人工智慧國際碩士學位學程
    关键词: 深度剪枝;輔助網路;量化;物件偵測;Depth Pruning;Auxiliary Network;Quantization;Object Detection;TinyML;TFLITE
    日期: 2024-07-23
    上传时间: 2024-10-09 14:41:04 (UTC+8)
    出版者: 國立中央大學
    摘要: 物件偵測技術在計算機視覺領域應用廣泛,但其高計算需求通常依賴強大的硬體支持,對資源有限的微控制器是一大挑戰。本研究基於 YOLOv5 及 TinyissimoYOLO ,提出了一種改進的 TYv5-P4 模型,通過深度剪枝、輔助網路以及量化,成功將模型大小縮小至 334KiB,並命名為 TYv5-P4-DA 。在低解析度輸入的情況下,該模型仍能保持相對較高的準確度。
    TYv5-P4-DA 的創新之處在於其 Backbone 僅保留三個 C3 層,並只使用單一輸出。這一方法不僅能在較低解析度輸入下提升準確度,還能有效減少模型大小。此外,與 TinyissimoYOLO 相比, TinyissimoYOLO 的 mAP 會隨輸入尺寸增加而下降,而 TYv5-P4-DA 的 mAP 則會隨輸入尺寸增加而提升。該模型採用高解析度圖像進行訓練,低解析度圖像進行推論,有效提高了物件偵測的準確性。
    這一成果為低功耗、低成本的 TinyML 應用提供了新的可能性,並具有廣泛的實際應用價值。未來工作將集中於進一步優化模型性能,提升準確度和推理速度,以滿足更多實際應用場景的需求。
    ;Object detection technology is extensively applied in the field of computer vision, yet its high computational requirements typically depend on robust hardware support, posing a significant challenge for resource-constrained microcontrollers. This research introduces an improved TYv5-P4 model based on YOLOv5 and TinyissimoYOLO. Through Depth Pruning, Auxiliary Networks and Quantization, the model size is successfully reduced to 334KiB, and it is named TYv5-P4-DA. This model maintains relatively high accuracy even with low-resolution inputs.
    The innovation of TYv5-P4-DA lies in its Backbone, which retains only three C3 layers and uses only P4 as the output. This method not only enhances accuracy with lower-resolution inputs but also effectively reduces the model size. Furthermore, unlike TinyissimoYOLO, which experiences a decline in mAP as input size increases, TYv5-P4-DA′s mAP improves with larger input sizes. The model is trained with high-resolution images and performs inference with low-resolution images, significantly enhancing object detection accuracy.
    This accomplishment provides new possibilities for low-power, low-cost TinyML applications and possesses broad practical value. Future work will focus on further optimizing model performance, enhancing accuracy, and speeding up inference to meet the demands of more practical application scenarios.
    显示于类别:[人工智慧國際碩士學位學程] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML109检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明