中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94590
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41627796      Online Users : 2456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94590


    Title: 零件保養頻率與更換週期之探討
    Authors: 林逢達;Lin, Feng-Ta
    Contributors: 工業管理研究所在職專班
    Keywords: 製造成本;保養頻率;迴歸分析;主成份分析;類神經網路預測;manufacturing cost;maintenance frequency;regression analysis;principal component analysis;neural network prediction
    Date: 2024-07-22
    Issue Date: 2024-10-09 15:17:50 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究針對車用半導體A公司生產48V Si MOSFET模組時,鋼嘴(Wedge)的保養頻率與更換週期之探討,利用機聯網的技術將機台生產日期、時間、生產參數、3D AOI量測數值傳至雲端資料庫處理中心備查,藉由資料預處理的方式進行初步的整理與歸納,透過迴歸分析判別自變數與因變數之間的相關性,再由主成份分析根據數據中共變異數的特徵性質找出數據中的主成份和特徵值,保留數據集中主要變異數,減少數據的維度,提高數據處理和分析的效率,最後透過類神經網路將數據代入透過類神經網路的輸入層,隱藏層通過非線性激活函數對數據進行處理和變換,輸出層則生成最終的預測結果或決策,藉此預測Wedge保養頻率預更換週期延長的可能性。;This study focuses on the discussion of the maintenance frequency and replacement cycle of steel nozzles (Wedge) used in the production of 48V Si MOSFET modules by automotive semiconductor company A. By utilizing Industrial Internet of Things (IIoT) technology, the production date, time, parameters, and 3D AOI measurement values of the equipment are transmitted to a cloud database processing center for record-keeping. Data preprocessing is performed for preliminary sorting and summarization. Regression analysis is used to determine the correlation between independent and dependent variables. Principal component analysis (PCA) identifies the main components and eigenvalues from the data based on the characteristics of the covariance, retaining the main variances in the dataset, reducing dimensionality, and improving data processing and analysis efficiency. Finally, neural networks are employed where data is input into the input layer, processed and transformed through nonlinear activation functions in the hidden layers, and the output layer generates the final prediction results or decisions. This approach predicts the potential for extending the maintenance frequency and replacement cycle of the Wedge.
    Appears in Collections:[Executive Master of Industrial Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML39View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明