中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94598
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42793208      Online Users : 985
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/94598


    Title: 應用 DBSCAN 演算法以提升生產線 UPH 驗證準確率
    Authors: 徐立宇;HSU, LI YU
    Contributors: 工業管理研究所在職專班
    Keywords: 演算法;聚類演算法;分群;四分位數;DBSCAN;UPH;K-means;OPTICS;PCB;Tukey
    Date: 2024-07-25
    Issue Date: 2024-10-09 15:18:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究探討了應用 DBSCAN 演算法來提升生產線 UPH(每小時產量)驗證準確
    率的有效性。電路板(PCB)作為電子產品中的核心部件,其需求急劇增長,對於製
    造公司來說,準確預測和監控生產線產能至關重要。傳統的數據分析方法,例如 Tukey
    方法,雖然在處理離群值方面有一定成效,但是在面對數據有多峰分佈和非對稱數據
    時,往往會導致計算結果不夠精確。因此,本研究基於多項數據演算法的評估下,提
    出了一種基於 DBSCAN(密度聚類演算法)的數據分析方法,目的在於改進現有的數
    據驗證方法,提高生產線產能的計算準確性。
    在研究過程中,我們首先介紹了 PCB 生產線的運作模式及相關產能計算的基本概
    念,接著回顧了現有的數據分析方法及其局限性,並詳細比較了多種分群演算法,最
    終選擇 DBSCAN 演算法作為研究主軸。通過對實際生產數據的測試和評估,新方法能
    夠更準確地識別和排除離群值,從而提高數據驗證的準確性和可靠性。研究結果顯
    示,與傳統方法相比,應用 DBSCAN 演算法能顯著提高 UPH 的驗證準確性,對於製
    造公司的生產計劃和決策具有重要的指標意義。
    ;This study explores the effectiveness of applying the DBSCAN algorithm to improve the
    accuracy of UPH (units per hour) verification in production lines. As printed circuit boards
    (PCBs) serve as the core components in electronic products, their demand has surged
    dramatically. For manufacturing companies, accurately predicting and monitoring production
    line capacity is crucial. Traditional data analysis methods, such as the Tukey method, while
    somewhat effective in handling outliers, often lead to imprecise results when dealing with
    multi-modal and asymmetrical data distributions. Therefore, this study proposes a data
    analysis method based on the DBSCAN (Density-Based Spatial Clustering of Applications
    with Noise) algorithm, evaluated against multiple data algorithms, to improve existing data
    verification methods and enhance the accuracy of production line capacity calculations.
    During the research process, we first introduced the operational model of PCB
    production lines and the basic concepts of related capacity calculations. Then, we reviewed
    the existing data analysis methods and their limitations, and thoroughly compared various
    clustering algorithms, ultimately selecting the DBSCAN algorithm as the main focus of the
    study. Through testing and evaluating actual production data, the new method can more
    accurately identify and exclude outliers, thereby improving the accuracy and reliability of data
    verification. The research results indicate that, compared to traditional methods, applying the
    DBSCAN algorithm significantly enhances the accuracy of UPH verification, providing
    crucial insights for manufacturing companies′ production planning and decision-making.
    Appears in Collections:[Executive Master of Industrial Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML38View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明