摘要: | 有鑑於近年來各國政府及民間企業開始發展越來越多重返月球或是其他深太空之衛星計畫 [深太空通常指低地球軌道 (LEO,離地約 300 至 2000 公里) 以外之區域],並且隨之增加的還有前往深太空的共乘 (Rideshare) 機會,但若要將衛星或酬載發射至深太空環境執行任務就必須要克服各種嚴苛的環境條件,例如更強烈的游離輻射量和高能粒子、更極端的溫度變化以及有限的資料下傳量和下傳速度。 為此國立中央大學開始進行登月科學酬載之研發,並最終設計出深太空輻射探測儀 (Deep Space Radiation Probe,簡稱 DSRP),其技術是沿用同樣由國立中央大學所自主研發之 3U 立方衛星 IDEASSat。DSRP 預計於 2024 年 Q4 搭載於日本民間企業 ispace 所開發之 HAKUTO-R Mission 2 登月艇一同發射至月球。在任務期間 DSRP 會透過輻射劑量儀和記憶體元件,量測地球與月球之間區域、月球軌道和月球表面的游離輻射劑量、劑量率和單粒子翻轉 (SEU) 率之測量。並且藉由此次任務所蒐集的輻射相關數據,希望有助於未來的深太空衛星航電或是酬載之發展,同時也進一步了解深太空環境及月球周遭的游離輻射環境。 本論文主要以介紹 DSRP 之飛行軟體設計為主,其中包括模式運作、儲存空間配置、軟體架構、指令和封包格式。另外,為了使DSRP盡可能的克服深太空中的各種輻射效應,本論文也將介紹針對各種輻射效應所進行的實際測試結果及結果討論。;In recent years, governments and private companies worldwide have been increasingly developing satellite missions to return to the Moon or explore other deep space area [deep space typically refers to area beyond Low Earth Orbit (LEO, which is 300 to 2,000 kilometers above Earth)]. This has led to a rise in rideshare opportunities for deep space missions. However, launching satellites or payloads into deep space environments for mission execution presents several challenges, including more intense ionizing radiation levels and high-energy particles, more extreme temperature variations, and limited data downlink capacity and speed. To address these challenges, the National Central University (NCU) embarked on the development of a lunar science payload, resulting in the Deep Space Radiation Probe (DSRP). The DSRP technology builds upon NCU′s previous experience with the 3U cubesat IDEASSat. The DSRP is scheduled to launch to the Moon in Q4 of 2024 aboard the HAKUTO-R Mission 2 lunar lander developed by the Japanese private company ispace. During the mission, the DSRP will measure ionizing radiation dose, dose rate, and single event upset (SEU) rate in the Earth-Moon region, lunar orbit, and on the lunar surface using radiation dosimeters and memory components. The radiation data collected during this mission is expected to aid in the development of future deep space satellite avionics or payloads and further our understanding of the deep space environment and the ionizing radiation environment around the Moon. This paper will focuses on the flight software design of the DSRP, including mode operation, storage space allocation, software architecture, and command and packet formats. Additionally, to enable the DSRP to withstand various radiation effects in deep space as much as possible, this thesis also presents the results of actual tests conducted for various radiation effects and a discussion of the results. |