傳統塑膠產品導致的污染已成為全球的嚴重問題,而利用各種內酯去進行開環聚合反應得到的聚酯具有生物可降解性和生物相容性,可以取代石化產業量產的不可降解塑膠,而達到環保永續的願景。本實驗利用格林納試劑輔助合成出一系列鋁錯合物。再將各種鋁金屬錯合物去測試內酯之開環聚合反應。例如: ε-己內酯和左旋丙交酯這類常見單體。並且利用測試不同催化劑/單體/起始劑的比例去優選出高產率並且分子量分佈度較窄的條件。測試其開環聚合的動力學反應,並發現開環反應之動力學對單體和催化劑皆為一級反應。在常溫下利用鋁錯合物對ε-己內酯進行開環聚合能以高產率 (ε-CL conv.= 98% in 3 min)得到分子量分佈度較窄的分子量分散性 (Ð = 1.065),且得到最佳的kobs為1.023 min-1。並且其他用系列的鋁錯合物對ε-己內酯進行開環聚合都能以高產率得到窄分佈度的分子量分散性。;The pollution caused by traditional plastic products has become a serious global issue. However, utilizing various lactones for ring-opening polymerization to produce polyesters with biodegradability and biocompatibility offers a promising solution to replace non-degradable plastics produced by the petrochemical industry, thereby achieving the vision of environmental sustainability. In this experiment, Grignard reagents were employed to help the syntheses of aluminum complexes. Subsequently, various aluminum metal complexes were tested for their catalytic activity in the ring-opening polymerization of lactones such as ε-caprolactone and L-lactide. Different ratios of catalyst/monomer/initiator were tested to optimize conditions for high yield and narrow molecular weight distribution. The kinetics of the ring-opening polymerization reaction were examined, revealing that the kinetics of the ring-opening reaction were first-order with respect to both the monomer and the catalyst. At room temperature, the best result for ε-caprolactone achieved 98% conversion in 3 min) and narrow molecular weight distribution (Ð = 1.065), with the optimal kobs being 1.023 min^-1. Similarly, the other Al complexes all yielded narrow molecular weight distributions at high yields when reacted with ε-caprolactone.