English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42573569      線上人數 : 1850
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94790


    題名: 製備銀奈米粒子/多孔隙矽晶奈米線/矽晶微米孔洞異質結構及其水蒸發發電特性之研究
    作者: 陳泓賓;Chen, Hung-Ping
    貢獻者: 化學工程與材料工程學系
    關鍵詞: 矽晶奈米線;水蒸發發電;可撓曲矽晶基材
    日期: 2024-08-21
    上傳時間: 2024-10-09 15:30:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究以兩步驟金屬輔助化學蝕刻法,成功地在N-type(001)晶面之矽單晶基材上製備出具備高深寬比、大面積準直型矽晶奈米線結構,再由去離子水來驗證水蒸發發電之趨勢變化及發電機制。除此之外,又進一步利用酸性橫向蝕刻法製備多孔隙矽晶奈米線結構,多孔隙矽晶奈米線結構相較於矽晶奈米線結構擁有更優異之比表面積性質,並透過水蒸發發電量測之結果證明其可大幅提升對於水蒸發發電元件之性能,再透過無電鍍披覆技術將銀奈米粒子以網絡狀的形式均勻披在多孔隙矽晶奈米線結構上,網絡狀之銀奈米粒子電極能夠擁有良好收集電荷的能力。銀奈米粒子/多孔隙矽晶奈米線結構之水蒸發發電元件在一般環境進行量測輸出電壓及輸出電流。最後,將具有最佳製程條件直接與薄化矽單晶基材結合。
    本研究以一步驟金屬輔助化學蝕刻法成功製備出均勻薄化之矽單晶基材,再透過上述之最佳製程條件製備出可撓曲銀奈米粒子多孔隙矽單晶奈米線結構,並展現出十分優秀的可撓曲性質,可應用於不同彎曲程度之水蒸發發電。
    為克服水源無法源源不絕供給之問題,本研究以多步驟金屬輔助化學蝕刻法成功製備出於均勻薄化之矽單晶基材背面製備矽晶微米孔洞結構,正面再結合上述製備銀奈米粒子多孔隙矽單晶奈米線之最佳製程技術製備出可撓曲銀奈米粒子多孔隙矽單晶奈米線/矽晶微米孔洞異質結構,能夠使液體由下往上輸送,能夠不再需要透過間歇性補水之方式,將其置於含有水之液面上,可透過毛細作用力將水導入置本實驗結構之上,藉此達到長時間發電,達到水蒸發發電元件之性能優化。
    ;This study successfully fabricated vertically aligned silicon nanowire structures with high aspect ratios and large areas on N-type (001) silicon substrates using a two-step met-al-assisted chemical etching method. The trend and mechanism of electricity generation from water evaporation were verified using deionized water. Furthermore, porous silicon nanowire structures were fabricated using an acidic lateral etching method. Compared to silicon nanowire structures, the porous silicon nanowire structures exhibited superior spe-cific surface area properties. The measurement results of electricity generation from water evaporation demonstrated that these structures significantly enhanced the performance of water evaporation power generation devices. Additionally, by employing an electroless plating technique, silver nanoparticles were uniformly coated in a network form on the porous silicon nanowire structures. The networked silver nanoparticle electrodes exhibited excellent charge collection capabilities. The water evaporation power generation device with silver nanoparticle-coated porous silicon nanowire structures was measured for output voltage and current in a general environment. Finally, the optimized process conditions were directly combined with the thinned silicon substrate.
    This study also successfully fabricated uniformly thinned silicon substrates using a one-step metal-assisted chemical etching method. Using the aforementioned optimized process conditions, flexible silver nanoparticle-coated porous silicon nanowire structures were prepared, demonstrating excellent flexibility. These structures can be applied to wa-ter evaporation power generation under various bending conditions.
    To address the issue of continuous water supply, this study successfully fabricated silicon micro-pore structures on the back of uniformly thinned silicon substrates using a multi-step metal-assisted chemical etching method. On the front side, the optimized pro-cess technology for fabricating silver nanoparticle-coated porous silicon nanowires was applied, resulting in flexible silver nanoparticle-coated porous silicon nanowire/silicon micro-pore heterogeneous structures. These structures can transport liquid from bottom to top, eliminating the need for intermittent water replenishment. By placing the structure on a liquid surface containing water, capillary action can draw water into the experimental structure, enabling long-term power generation and optimizing the performance of water evaporation power generation devices.
    顯示於類別:[化學工程與材料工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML55檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明