中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94848
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42876282      在线人数 : 934
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94848


    题名: 基於角色情感互動與主動式照護的生成式AI模型能力研究;Role-Based Emotional Interaction and Proactive Care Capabilities of Generative AI Models
    作者: 李奉爵;Lee, FENG-CHUEH
    贡献者: 生醫科學與工程學系
    关键词: 生成式AI;主動式照護;角色模擬預測;Generative AI;proactive nursing;Role simulation and predication
    日期: 2024-07-26
    上传时间: 2024-10-09 15:33:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在探討如何將大語言模型(LLM)應用於解決人口老齡化帶來的居家照護資源短缺問題。我們透過主流大語言模型及提示詞工程,評估LLM在理解並處理各種居家照護情境主動式照護的能力。主要實驗包括角色預測、情感分析、角色情感回應和聲音事件分析。
      在角色預測能力方面,LLM表現出平均99.16%的高準確率,顯示LLM有潛力從對話中快速識別被照護者的個性特徵與語言風格,從而提供個性化的照護服務。情感分析方面,採用Ekman的6個情感分類法,LLM較易達成多數決,可以簡化應對複雜度並提高回應速度,滿足照護情境需求。角色情感回應測試中,LLM平均達到78.6%的角色預測準確率,展示了其模擬不同角色言語風格的能力。聲音事件反應測試結果則顯示,LLM能夠合理分析聲音事件,並提供適當的應對策略,展現了在緊急情況下的決策能力。
      未來結合多模態數據(如語音、表情)進行情感分析,有望比純文字分析提升辨識準確度,能更全面地理解被照護者的狀態。生成文化偏差問題突顯了發展本土化AI模型的必要性。在特定應用下限制模型生成範圍,都是未來研究需要關注的方向。總的來說,本研究為LLM在老年照護領域提供了有價值的洞察。通過進一步的研究和優化,LLM有望在提升照護質量、緩解人力資源壓力上發揮作用,為應對人口老齡化帶來的挑戰開闢新的可能性。這項研究不僅為智能照護系統的發展提供了重要基礎,也為未來更人性化、高效的老年照護模式指引了方向。
    ;This study aims to explore how Large Language Models (LLMs) can be applied to address the shortage of home care resources resulting from an aging population. Through generative large language models and prompt engineering, we evaluate the ability of LLMs to understand and process various home care scenarios for proactive care. The main experiments include role prediction, sentiment analysis, role-based emotional response, and sound event analysis.
    In terms of role prediction capability, LLMs demonstrated a high average accuracy of 99.16%, indicating their potential to quickly identify the personality traits and language styles of care recipients from conversations, thereby providing personalized care services. Regarding sentiment analysis, using Ekman′s six emotion classification method, LLMs more easily reached a majority decision, which can simplify response complexity and increase response speed, meeting the needs of care scenarios. In the role-based emotional response test, LLMs achieved an average role prediction accuracy of 78.6%, showcasing their ability to simulate different role-specific speech styles. The results of the sound event reaction test indicated that LLMs can reasonably analyze sound events and provide appropriate response strategies, demonstrating decision-making capabilities in emergency situations.
    Future integration of multimodal data (such as voice and facial expressions) for sentiment analysis is expected to improve recognition accuracy compared to pure text analysis, enabling a more comprehensive understanding of the care recipient′s state. The issue of generated cultural bias highlights the necessity of developing localized AI models. Restricting the model′s generation range for specific applications is also a direction that future research needs to address. Overall, this study provides valuable insights into the application of LLMs in elderly care. Through further research and optimization, LLMs have the potential to play a role in improving care quality and alleviating human resource pressure, opening up new possibilities for addressing the challenges posed by an aging population. This research not only provides an important foundation for the development of intelligent care systems but also points the way toward more humane and efficient elderly care models in the future.
    显示于类别:[生物醫學工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML38检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明